
PRAESENSA
Public Address and Voice Alarm System

en Open Interface programming instructions

1 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

2 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

3 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Table of Contents

DISCLAIMER .. 20

DOCUMENT HISTORY .. 21

PART 1 – OPEN INTERFACE PROTOCOL ... 22

1. Introduction ... 23

1.1 Purpose ... 23

1.2 Scope ... 23

1.3 Definitions, Acronyms and Abbreviations .. 23

1.4 References.. 23

1.5 Overview ... 23

1.6 How to read this document .. 24

1.7 Open Interface changes ... 24

2. Application Control Overview .. 26

2.1 Calls ... 26

2.1.1 Introduction.. 26

2.1.2 Components .. 26

2.1.3 Priority .. 26

2.1.4 Call content ... 26

2.1.5 Routing ... 26

2.1.6 Restart call .. 27

2.2 Diagnostics ... 27

2.3 Hardware connection .. 27

3. Protocol Considerations .. 28

3.1 Set-up a connection .. 28

3.2 Heartbeat .. 28

3.3 Response times ... 28

3.4 Message format ... 28

3.4.1 Introduction.. 28

3.4.2 General Message Layout .. 28

4 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

3.4.3 Conventions .. 29

3.4.3.1 Basic data types ... 29

3.4.3.2 Variable length Data types .. 30

3.4.3.3 Comma separated lists .. 31

3.5 Heartbeat message MESSAGETYPE_OIP_KeepAlive ... 31

3.6 Protocol fault message MESSAGETYPE_OIP_ResponseProtocolError 32

3.7 Buffer overflow ... 32

4. Command messages .. 33

4.1 Introduction ... 33

4.2 MESSAGETYPE_OIP_Login ... 33

4.3 MESSAGETYPE_OIP_GetNcoVersion ... 34

4.4 MESSAGETYPE_OIP_GetProtocolVersion .. 34

4.5 MESSAGETYPE_OIP_CreateCallEx2 ... 34

4.6 MESSAGETYPE_OIP_CreateCallEx3 ... 37

4.7 MESSAGETYPE_OIP_StartCreatedCall ... 40

4.8 MESSAGETYPE_OIP_StopCall ... 40

4.9 MESSAGETYPE_OIP_AbortCall .. 41

4.10 MESSAGETYPE_OIP_AddToCall .. 42

4.11 MESSAGETYPE_OIP_RemoveFromCall ... 42

4.12 MESSAGETYPE_OIP_CancelAll ... 43

4.13 MESSAGETYPE_OIP_CancelLast .. 43

4.14 MESSAGETYPE_OIP_AckAllFaults .. 44

4.15 MESSAGETYPE_OIP_ResetAllFaults ... 44

4.16 MESSAGETYPE_OIP_ReportFault ... 45

4.17 MESSAGETYPE_OIP_AckFault ... 46

4.18 MESSAGETYPE_OIP_ResolveFault ... 46

4.19 MESSAGETYPE_OIP_ResetFault ... 47

4.20 MESSAGETYPE_OIP_AckEvacAlarm .. 47

4.21 MESSAGETYPE_OIP_ResetEvacAlarmEx .. 48

4.22 MESSAGETYPE_OIP_IncrementBgmVolume ... 49

5 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.23 MESSAGETYPE_OIP_IncrementBgmChannelVolume .. 49

4.24 MESSAGETYPE_OIP_DecrementBgmVolume ... 50

4.25 MESSAGETYPE_OIP_DecrementBgmChannelVolume .. 50

4.26 MESSAGETYPE_OIP_SetBgmVolume ... 51

4.27 MESSAGETYPE_OIP_AddBgmRouting ... 51

4.28 MESSAGETYPE_OIP_RemoveBgmRouting.. 52

4.29 MESSAGETYPE_OIP_ToggleBgmRouting .. 52

4.30 MESSAGETYPE_OIP_SetBgmRouting .. 53

4.31 MESSAGETYPE_OIP_SetSubscriptionAlarm .. 54

4.32 MESSAGETYPE_OIP_SetSubscriptionResources ... 54

4.33 MESSAGETYPE_OIP_SetSubscriptionResourceFaultState ... 55

4.34 MESSAGETYPE_OIP_SetSubscriptionBgmRouting .. 56

4.35 MESSAGETYPE_OIP_SetSubscriptionEvents .. 56

4.36 MESSAGETYPE_OIP_SetSubscriptionBgmVolume ... 57

4.37 MESSAGETYPE_OIP_GetZoneNames .. 58

4.38 MESSAGETYPE_OIP_GetZoneGroupNames ... 58

4.39 MESSAGETYPE_OIP_GetMessageNames ... 58

4.40 MESSAGETYPE_OIP_GetChimeNames .. 59

4.41 MESSAGETYPE_OIP_GetAudioInputNames .. 59

4.42 MESSAGETYPE_OIP_GetBgmChannelNames .. 59

4.43 MESSAGETYPE_OIP_GetConfigId ... 60

4.44 MESSAGETYPE_OIP_ActivateVirtualControlInput ... 60

4.45 MESSAGETYPE_OIP_DeactivateVirtualControlInput .. 60

4.46 MESSAGETYPE_OIP_SetSubscriptionUnitCount ... 61

4.47 MESSAGETYPE_OIP_SetSubscriptionVirtualControlInputs ... 61

4.48 MESSAGETYPE_OIP_GetVirtualControlInputNames .. 62

4.49 MESSAGETYPE_OIP_GetConfiguredUnits ... 62

4.50 MESSAGETYPE_OIP_GetConnectedUnits ... 63

5. Response messages... 64

5.1 Introduction ... 64

6 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

5.2 MESSAGETYPE_OIP_Response... 64

5.3 MESSAGETYPE_OIP_ResponseGetNcoVersion.. 64

5.4 MESSAGETYPE_OIP_ResponseGetProtocolVersion .. 65

5.5 MESSAGETYPE_OIP_ResponseCallId .. 65

5.6 MESSAGETYPE_OIP_ResponseReportFault .. 66

5.7 MESSAGETYPE_OIP_ResponseNames .. 66

5.8 MESSAGETYPE_OIP_ResponseConfigId .. 67

5.9 MESSAGETYPE_OIP_ResponseUnits ... 67

6. Notification Messages .. 68

6.1 Introduction ... 68

6.2 MESSAGETYPE_OIP_NotifyCall ... 68

6.3 MESSAGETYPE_OIP_NotifyAlarm .. 69

6.4 MESSAGETYPE_OIP_NotifyResources ... 69

6.5 MESSAGETYPE_OIP_NotifyResourceFaultState ... 70

6.6 MESSAGETYPE_OIP_NotifyBgmRouting .. 70

6.7 MESSAGETYPE_OIP_NotifyEvent .. 71

6.8 MESSAGETYPE_OIP_NotifyBgmVolume ... 71

6.9 MESSAGETYPE_OIP_NotifyUnitCount ... 72

6.10 MESSAGETYPE_OIP_NotifyVirtualControlInputState .. 72

7. Diagnostic events Structures .. 74

7.1 Introduction ... 74

7.2 General Diagnostic Events ... 75

7.2.1 DET_EvacAcknowledge .. 76

7.2.2 DET_EvacReset ... 76

7.2.3 DET_EvacSet ... 76

7.2.4 DET_UnitConnect .. 76

7.2.5 DET_SCStartup .. 76

7.2.6 DET_OpenInterfaceConnect .. 76

7.2.7 DET_OpenInterfaceDisconnect ... 77

7.2.8 DET_OpenInterfaceConnectFailed ... 77

7 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.2.9 DET_CallLoggingSuspended ... 77

7.2.10 DET_CallLoggingResumed .. 77

7.2.11 DET_UserLogIn.. 77

7.2.12 DET_UserLogOut .. 77

7.2.13 DET_UserLogInFailed ... 78

7.2.14 DET_BackupPowerModeStart ... 78

7.2.15 DET_BackupPowerModeEnd .. 78

7.2.16 DET_ConfigurationRestored .. 78

7.2.17 DET_DemoteToBackup .. 79

7.2.18 DET_InControl .. 79

7.3 Call Diagnostic Events .. 79

7.3.1 DET_CallStartDiagEventV2 .. 79

7.3.2 DET_CallEndDiagEventV2 ... 80

7.3.3 DET_CallChangeResourceDiagEventV2 ... 81

7.3.4 DET_CallTimeoutDiagEventV2 .. 82

7.3.5 DET_CallRestartDiagEvent .. 82

7.3.6 DET_CallResetDiagEvent .. 83

7.4 Fault Diagnostic Events .. 84

7.4.1 DET_AudioPathSupervision ... 84

7.4.2 DET_MicrophoneSupervision .. 84

7.4.3 DET_ControlInputLineFault .. 84

7.4.4 DET_CallStationExtension ... 85

7.4.5 DET_ConfigurationFile .. 85

7.4.6 DET_ConfigurationVersion ... 85

7.4.7 DET_IllegalConfiguration .. 86

7.4.8 DET_PrerecordedMessagesNames ... 86

7.4.9 DET_PrerecordedMessagesCorrupt ... 86

7.4.10 DET_UnitMissing ... 87

7.4.11 DET_UnitReset .. 87

7.4.12 DET_UserInjectedFault ... 87

8 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.13 DET_NoFaults .. 88

7.4.14 DET_ZoneLineFault .. 88

7.4.15 DET_NetworkChangeDiagEvent ... 88

7.4.16 DET_IncompatibleFirmware ... 89

7.4.17 DET_Amp48VAFault ... 89

7.4.18 DET_Amp48VBFault ... 90

7.4.19 DET_AmpChannelFault .. 90

7.4.20 DET_AmpShortCircuitLineAFault .. 91

7.4.21 DET_AmpShortCircuitLineBFault .. 91

7.4.22 DET_AmpAcc18VFault ... 91

7.4.23 DET_AmpSpareInternalFault ... 92

7.4.24 DET_AmpChannelOverloadFault .. 92

7.4.25 DET_EolFailureLineAFault ... 92

7.4.26 DET_EolFailureLineBFault ... 92

7.4.27 DET_GroundShortFault .. 93

7.4.28 DET_OverheatFault ... 93

7.4.29 DET_PowerMainsSupplyFault ... 93

7.4.30 DET_PowerBackupSupplyFault .. 93

7.4.31 DET_MainsAbsentPSU1Fault .. 94

7.4.32 DET_MainsAbsentPSU2Fault .. 94

7.4.33 DET_MainsAbsentPSU3Fault .. 94

7.4.34 DET_BackupAbsentPSU1Fault ... 94

7.4.35 DET_BackupAbsentPSU2Fault ... 94

7.4.36 DET_BackupAbsentPSU3Fault ... 95

7.4.37 DET_DcOut1PSU1Fault ... 95

7.4.38 DET_DcOut2PSU1Fault ... 95

7.4.39 DET_DcOut1PSU2Fault ... 95

7.4.40 DET_DcOut2PSU2Fault ... 95

7.4.41 DET_DcOut1PSU3Fault ... 96

7.4.42 DET_DcOut2PSU3Fault ... 96

9 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.43 DET_AudioLifelinePSU1Fault .. 96

7.4.44 DET_AudioLifelinePSU2Fault .. 96

7.4.45 DET_AudioLifelinePSU3Fault .. 97

7.4.46 DET_AccSupplyPSU1Fault .. 97

7.4.47 DET_AccSupplyPSU2Fault .. 97

7.4.48 DET_AccSupplyPSU3Fault .. 97

7.4.49 DET_Fan1Fault .. 97

7.4.50 DET_Fan2Fault .. 98

7.4.51 DET_DcAux1Fault ... 98

7.4.52 DET_DcAux2Fault ... 98

7.4.53 DET_BatteryShortFault ... 98

7.4.54 DET_BatteryRiFault ... 98

7.4.55 DET_BatteryOverheatFault .. 99

7.4.56 DET_BatteryFloatChargeFault... 99

7.4.57 DET_MainsAbsentChargerFault .. 99

7.4.58 DET_PoESupplyFault ... 99

7.4.59 DET_PowerSupplyAFault ... 99

7.4.60 DET_PowerSupplyBFault ... 100

7.4.61 DET_ExternalPowerFault ... 100

7.4.62 DET_ChargerSupplyVoltageTooLowFault ... 100

7.4.63 DET_BatteryOvervoltageFault ... 100

7.4.64 DET_BatteryUndervoltageFault ... 100

7.4.65 DET_MediaClockFault .. 101

7.4.66 DET_ChargerFault ... 101

7.4.67 DET_Amp20VFault .. 101

7.4.68 DET_AmpPsuFault .. 101

7.4.69 DET_NetworkLatencyFault... 102

7.4.70 DET_SynchronizationFault ... 102

7.4.71 DET_AudioDelayFault ... 102

7.4.72 DET_InternalPowerFault .. 103

10 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.73 DET_InternalCommunicationFault .. 103

7.4.74 DET_VoIPFault .. 103

7.4.75 DET_RemoteOutputFault ... 103

7.4.76 DET_RemoteOutputLoopFault .. 104

7.4.77 DET_RemoteOutputConfigurationFault ... 104

7.4.78 DET_LicenseFault ... 105

7.4.79 DET_RemoteSystemFault .. 105

7.4.80 DET_RemoteMainPowerFault ... 105

7.4.81 DET_RemoteBackupPowerFault... 105

7.4.82 DET_RemoteGroundFault .. 106

7.4.83 DET_RemoteFault ... 106

7.4.84 DET_PowerSupplyFault .. 106

7.4.85 DET_StackedSwitchMismatchFault .. 106

7.4.86 DET_RedundantDataPathFault ... 106

7.4.87 DET_ControlOutputLineFault ... 107

8. Event Originator Structures ..108

8.1 Introduction ... 108

8.2 OIEOT_NoEventOriginator... 108

8.3 OIEOT_UnitEventOriginator... 108

8.4 OIEOT_OpenInterfaceEventOriginator .. 109

8.5 OIEOT_ControlInputEventOriginator .. 109

8.6 OIEOT_AudioOutputEventOriginator ... 110

8.7 OIEOT_AudioInputEventOriginator... 110

8.8 OIEOT_UserEventOriginator ... 110

8.9 OIEOT_NetworkEventOriginator ... 111

8.10 OIEOT_StackedUnitEventOriginator .. 111

8.11 OIEOT_ControlOutputEventOriginator ... 112

9. OIP Constant values ..113

9.1 Protocol Constants .. 113

9.2 General Constants ... 113

11 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

9.2.1 TOIEventId ... 113

9.2.2 TOICallId ... 113

9.2.3 TOIAlarmType .. 114

9.2.4 TOIAlarmState .. 114

9.2.5 TOIResourceState .. 114

9.2.6 TOIResourceFaultState .. 114

9.2.7 TOICallState ... 115

9.2.8 TOICallStopReason ... 115

9.2.9 TOICallResetReason ... 116

9.2.10 TOIActionType ... 116

9.2.11 TOICallOutputHandling .. 117

9.2.12 TOICallStackingMode ... 117

9.2.13 TOICallTiming ... 118

9.2.14 TOICallStackingTimeout ... 118

9.2.15 TOIVirtualControlInputDeactivation .. 118

9.2.16 TOIVirtualControlInputState .. 119

9.3 Diagnostic Constant values ... 119

9.3.1 TDiagEventState ... 119

9.3.2 TDiagEventGroup ... 119

9.3.3 TDiagEventType ... 120

9.4 Message Types .. 124

9.5 Event originator Message Types ... 126

10. Error Codes ...127

PART 2 – OPEN INTERFACE LIBRARY ..129

11. Introduction ..130

11.1 Purpose ... 130

11.2 Scope .. 130

11.3 Definitions, Acronyms and Abbreviations .. 130

11.4 References ... 130

11.5 Summary ... 130

12 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

12. Application Control Overview ..131

12.1 Principle .. 131

12.1.1 Limitations ... 131

12.2 Referencing the library .. 131

12.3 Library usage in C# ... 132

12.4 Catching errors .. 132

13. Interface Definition ...133

13.1 Introduction ... 133

13.1.1 Method and Event explanation .. 133

13.2 Enumeration type definitions ... 133

13.2.1 OpenInterfaceConstants ... 133

13.2.2 TIOErrorCode ... 133

13.2.3 TOIAlarmType .. 134

13.2.4 TOIAlarmState .. 134

13.2.5 TOICallPriority .. 135

13.2.6 TOICallState ... 135

13.2.7 TOICallStopReason ... 136

13.2.8 TOICallResetReason .. 136

13.2.9 TOIResourceState ... 136

13.2.10 TOIResourceFaultState .. 137

13.2.11 TOIVirtualControlInputDeactivation .. 137

13.2.12 TOIVirtualControlInputState ... 137

13.2.13 TOIDiagEventType .. 137

13.2.13.1 Call Diagnostic Event-Group Event-types .. 137

13.2.13.2 General Diagnostic Event-Group Event-types 138

13.2.13.3 Fault Diagnostic Event-Group Event-types .. 139

13.2.14 TOIDiagEventGroup .. 146

13.2.15 TOIEventOriginatorType ... 147

13.2.16 TOIDiagEventState .. 147

13.2.17 TOIActionType ... 147

13 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.2.18 TOICallOutputHandling ... 148

13.2.19 TOICallStackingMode ... 148

13.2.20 TOICallTiming .. 149

13.3 Methods .. 149

13.3.1 Connect ... 149

13.3.2 Disconnect .. 149

13.3.3 GetNcoVersion ... 150

13.3.4 GetProtocolVersion .. 150

13.3.5 CreateCallEx2 .. 150

13.3.6 CreateCallEx3 .. 152

13.3.7 StartCreatedCall ... 154

13.3.8 StopCall ... 155

13.3.9 AbortCall .. 155

13.3.10 CancelAll ... 155

13.3.11 CancelLast .. 155

13.3.12 AddToCall ... 155

13.3.13 RemoveFromCall ... 156

13.3.14 ReportFault ... 156

13.3.15 ResolveFault ... 156

13.3.16 AckFault .. 157

13.3.17 ResetFault ... 157

13.3.18 AckAllFaults .. 157

13.3.19 ResetAllFaults .. 157

13.3.20 AckEvacAlarm .. 158

13.3.21 ResetEvacAlarmEx .. 158

13.3.22 AckFaultAlarm .. 158

13.3.23 ResetFaultAlarm .. 158

13.3.24 GetAudioInputNames .. 159

13.3.25 GetBgmChannelNames .. 159

13.3.26 GetChimeNames ... 159

14 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.3.27 GetMessageNames ... 159

13.3.28 GetZoneGroupNames ... 159

13.3.29 GetZoneNames .. 160

13.3.30 GetConfigId ... 160

13.3.31 SetSubscriptionResources ... 160

13.3.32 SetSubscriptionResourcesFaultState ... 161

13.3.33 SetSubscriptionBgmVolume .. 161

13.3.34 SetSubscriptionBgmRouting .. 162

13.3.35 SetSubscriptionEvents .. 162

13.3.36 SetSubscriptionAlarm .. 162

13.3.37 SetSubscriptionUnitCount .. 163

13.3.38 IncrementBgmVolume .. 163

13.3.39 DecrementBgmVolume ... 163

13.3.40 IncrementBgmChannelVolume .. 164

13.3.41 DecrementBgmChannelVolume .. 164

13.3.42 SetBgmVolume .. 164

13.3.43 AddBgmRouting ... 164

13.3.44 RemoveBgmRouting ... 165

13.3.45 ToggleBgmRouting .. 165

13.3.46 SetBgmRouting .. 165

13.3.47 ActivateVirtualControlInput ... 166

13.3.48 DeactivateVirtualControlInput .. 166

13.3.49 SetSubscriptionVirtualControlInputs ... 166

13.3.50 GetVirtualControlInputNames .. 167

13.3.51 GetConfiguredUnits ... 167

13.3.52 GetConnectedUnits ... 167

13.4 Events.. 167

13.4.1 ConnectionBroken ... 168

13.4.2 CallStateChanged .. 168

13.4.3 ResourceStateChanged .. 168

15 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.4.4 ResourceFaultStateChanged ... 169

13.4.5 BgmRoutingChanged .. 169

13.4.6 BgmVolumeChanged .. 169

13.4.7 AlarmUpdate ... 170

13.4.8 UnitCountChanged .. 170

13.4.9 DiagEventNotification .. 170

13.4.10 VirtualControlInputStateChanged ... 170

13.5 DiagEvent Classes .. 171

13.5.1 DiagEvent .. 171

13.5.2 GeneralEvent .. 172

13.5.2.1 DET_EvacAcknowledge .. 172

13.5.2.2 DET_EvacReset ... 172

13.5.2.3 DET_EvacSet ... 172

13.5.2.4 DET_UnitConnect .. 172

13.5.2.5 DET_DemoteToBackup .. 172

13.5.2.6 DET_SCStartup .. 172

13.5.2.7 DET_OpenInterfaceConnect .. 172

13.5.2.8 DET_OpenInterfaceDisconnect ... 172

13.5.2.9 DET_OpenInterfaceConnectFailed ... 172

13.5.2.10 DET_CallLoggingSuspended ... 172

13.5.2.11 DET_CallLoggingResumed .. 173

13.5.2.12 DET_UserLogIn .. 173

13.5.2.13 DET_UserLogOut ... 173

13.5.2.14 DET_UserLogInFailed ... 173

13.5.2.15 DET_BackupPowerModeStart ... 173

13.5.2.16 DET_BackupPowerModeEnd .. 173

13.5.2.17 DET_ConfigurationRestored .. 173

13.5.2.18 DET_InControl .. 173

13.5.3 CallDiagEventV2 .. 173

13.5.3.1 DET_CallStartDiagEventV2 .. 174

16 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.3.2 DET_CallEndDiagEventV2 ... 174

13.5.3.3 DET_CallChangeResourceDiagEventV2 ... 174

13.5.3.4 DET_CallTimeoutDiagEventV2 .. 175

13.5.3.5 DET_CallRestartDiagEvent .. 175

13.5.3.6 DET_CallResetDiagEvent ... 175

13.5.4 FaultEvent ... 175

13.5.4.1 DET_AudioPathSupervision ... 175

13.5.4.2 DET_MicrophoneSupervision ... 175

13.5.4.3 DET_ControlInputLineFault .. 176

13.5.4.4 DET_CallStationExtension.. 176

13.5.4.5 DET_ConfigurationFile .. 176

13.5.4.6 DET_ConfigurationVersion ... 176

13.5.4.7 DET_IllegalConfiguration .. 176

13.5.4.8 DET_PrerecordedMessagesNames .. 176

13.5.4.9 DET_PrerecordedMessagesCorrupt ... 176

13.5.4.10 DET_UnitMissing ... 177

13.5.4.11 DET_UnitReset ... 177

13.5.4.12 DET_UserInjectedFault ... 177

13.5.4.13 DET_NoFaults .. 177

13.5.4.14 DET_ZoneLineFault ... 177

13.5.4.15 DET_NetworkChange.. 177

13.5.4.16 DET_IncompatibleFirmware ... 178

13.5.4.17 DET_Amp48VAFault ... 178

13.5.4.18 DET_Amp48VBFault ... 178

13.5.4.19 DET_AmpChannelFault .. 178

13.5.4.20 DET_AmpShortCircuitLineAFault .. 178

13.5.4.21 DET_AmpShortCircuitLineBFault .. 179

13.5.4.22 DET_AmpAcc18VFault ... 179

13.5.4.23 DET_AmpSpareInternalFault ... 179

13.5.4.24 DET_AmpChannelOverloadFault .. 179

17 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.25 DET_EolFailureLineAFault ... 179

13.5.4.26 DET_EolFailureLineBFault ... 179

13.5.4.27 DET_GroundShortFault .. 180

13.5.4.28 DET_OverheatFault ... 180

13.5.4.29 DET_PowerMainsSupply .. 180

13.5.4.30 DET_PowerBackupSupply ... 180

13.5.4.31 DET_MainsAbsentPSU1Fault .. 180

13.5.4.32 DET_MainsAbsentPSU2Fault .. 180

13.5.4.33 DET_MainsAbsentPSU3Fault .. 180

13.5.4.34 DET_BackupAbsentPSU1Fault ... 180

13.5.4.35 DET_BackupAbsentPSU2Fault ... 180

13.5.4.36 DET_BackupAbsentPSU3Fault ... 180

13.5.4.37 DET_DcOut1PSU1Fault ... 180

13.5.4.38 DET_DcOut2PSU1Fault ... 181

13.5.4.39 DET_DcOut1PSU2Fault ... 181

13.5.4.40 DET_DcOut2PSU2Fault ... 181

13.5.4.41 DET_DcOut1PSU3Fault ... 181

13.5.4.42 DET_DcOut2PSU3Fault ... 181

13.5.4.43 DET_AudioLifelinePSU1Fault .. 181

13.5.4.44 DET_AudioLifelinePSU2Fault .. 181

13.5.4.45 DET_AudioLifelinePSU3Fault .. 181

13.5.4.46 DET_AccSupplyPSU1Fault .. 181

13.5.4.47 DET_AccSupplyPSU2Fault .. 181

13.5.4.48 DET_AccSupplyPSU3Fault .. 181

13.5.4.49 DET_Fan1Fault .. 182

13.5.4.50 DET_Fan2Fault .. 182

13.5.4.51 DET_DcAux1Fault ... 182

13.5.4.52 DET_DcAux2Fault ... 182

13.5.4.53 DET_BatteryShortFault ... 182

13.5.4.54 DET_BatteryRiFault ... 182

18 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.55 DET_BatteryOverheatFault .. 182

13.5.4.56 DET_BatteryFloatChargeFault ... 182

13.5.4.57 DET_MainsAbsentChargerFault .. 182

13.5.4.58 DET_PoESupplyFault ... 182

13.5.4.59 DET_PowerSupplyAFault ... 182

13.5.4.60 DET_PowerSupplyBFault ... 182

13.5.4.61 DET_ExternalPowerFault ... 183

13.5.4.62 DET_ChargerSupplyVoltageTooLowFault ... 183

13.5.4.63 DET_BatteryOvervoltageFault ... 183

13.5.4.64 DET_BatteryUndervoltageFault ... 183

13.5.4.65 DET_MediaClockFault .. 183

13.5.4.66 DET_ChargerFault ... 183

13.5.4.67 DET_Amp20VFault .. 183

13.5.4.68 DET_AmpPsuFault .. 183

13.5.4.69 DET_NetworkLatencyFault ... 183

13.5.4.70 DET_SynchronizationFault ... 184

13.5.4.71 DET_AudioDelayFault ... 184

13.5.4.72 DET_InternalPowerFault ... 184

13.5.4.73 DET_InternalCommunicationFault .. 184

13.5.4.74 DET_VoipFault ... 184

13.5.4.75 DET_RemoteOutputFault ... 184

13.5.4.76 DET_RemoteOutputLoopFault .. 184

13.5.4.77 DET_RemoteOutputConfigurationFault .. 185

13.5.4.78 DET_LicenseFault ... 185

13.5.4.79 DET_RemoteSystemFault .. 185

13.5.4.80 DET_RemoteMainPowerFault ... 185

13.5.4.81 DET_RemoteBackupPowerFault ... 185

13.5.4.82 DET_RemoteGroundFault .. 185

13.5.4.83 DET_RemoteFault ... 185

13.5.4.84 DET_PowerSupplyFault .. 186

19 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.85 DET_StackedSwitchMismatchFault .. 186

13.5.4.86 DET_RedundantDataPathFault ... 186

13.5.4.87 DET_ControlOutputLineFault ... 186

13.6 EventOriginator classes .. 186

13.6.1 EventOriginator .. 186

13.6.1.1 NoEventOriginator .. 187

13.6.1.2 UnitEventOriginator .. 187

13.6.1.3 OpenInterfaceEventOriginator.. 187

13.6.1.4 ControlInputEventOriginator ... 187

13.6.1.5 AudioOutputEventOriginator ... 187

13.6.1.6 AudioInputEventOriginator .. 187

13.6.1.7 UserEventOriginator .. 188

13.6.1.8 NetworkEventOriginator .. 188

13.6.1.9 StackedUnitEventOriginator ... 188

13.6.1.10 ControlOutputEventOriginator .. 188

14. Examples ..189

14.1 Interface usage .. 189

20 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

DISCLAIMER

Although every effort has been made to ensure the information and data contained in these

Open Interface programming instructions is correct, no rights can be derived from the contents.

Bosch Security Systems B.V. disclaim all warranties with regard to the information provided in

these instructions. In no event shall Bosch Security Systems B.V. be liable for any special,

indirect or consequential damages whatsoever resulting from loss of use, data or profits,

whether in action of contract, negligence or other tortious action, arising out of or in connection

with the use of the information provided in these Open Interface programming instructions.

21 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

DOCUMENT HISTORY

Date Version Reason

12-2019 V1.00 1st edition

05-2020 V1.10 Chapters 7.4.71 and 13.5.4.71
added. 3.2.13.3, 9.3 and 9.4 updated.

06-2021 V1.40 Chapters 1.7, 7.2.18, 7.4.72, 7.4.73,
7.7.74, 13.5.2.18 added, and 4.49,
4.50, 5.9, 7.4, 7.4.70, 9.3.3,
13.2.13.2, 13.2.13.3 updated.

02-2022 V1.50 Added RedundantDataPathFault.

04-2023 V1.80 Updates:

• Port number data type for
NetworkEventOriginator

• TLS version number

• Rename SystemInputContact
to ControlInputLineFault

• Update .NET target
framework to 4.8.

New:

• ControlOutputLineFault
diagnostic event

• ControlOutputEventOriginator.

08-2023 V1.91 Removed non-partial calls
explanation. Non-partial calls are not
supported for PRAESENSA.

04-2024 V2.00 Added note about minimum and
maximum BGM volume.

Updated call stacking timeout.

07-2014 V2.10 Updated descriptions due to the
functions call stacking and time-shift.

Added note about emergency control
settings for calls with emergency
priority and acknowledge/reset of the
emergency alarm.

22 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

PART 1 – OPEN INTERFACE PROTOCOL

Part 1 of the Open Interface programming instructions describes the Open Interface

protocol of the PRAESENSA system.

23 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

1. INTRODUCTION

1.1 Purpose

This document describes the native communication interface of the PRAESENSA Public

Address System.

1.2 Scope

This document is intended for persons, who want to integrate PRAESENSA in their

applications with the PRAESENSA native communication interface. They must have

knowledge about:

• The PRAESENSA system and its installation (see [UG_PRAESENSA])

• The TCP/IP protocol and how to communicate using TCP/IP

• Optionally, the TLS protocol and how to secure communication using TLS (when

using a secure connection)

This document does not describe the high-level communication (Application

Programming Interfaces, API). Refer to [UM_OPENINF] for information about controlling

the PRAESENSA with high-level Windows™ based languages.

It is not possible to derive any rights from this document regarding the programming

interface. Extensions and improvements on the Open Interface can be introduced in new

versions of the PRAESENSA.

1.3 Definitions, Acronyms and Abbreviations

SC

OI

PRAESENSA system controller

Open Interface

PA Public address

OIP Open Interface Protocol

LSB Least Significant Byte

MSB Most Significant Byte

1.4 References

The reference that must be used for this document is: UM_OPENINF_PRAESENSA

UG_PRAESENS

A

User guide PRAESENSA system

UM_OPENINF User manual Open Interface control with C# and

.NET Framework

GO209101

1.5 Overview

Chapter 0 is a general introduction to the document.

24 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Chapter 3 describes the protocol used for the communication

Chapter 4 describes the command messages to trigger functionality on the

PRAESENSA system.

Chapter 5 describes the response messages to be expected after a command

transmission.

Chapter 6 describes the notification messages sent by the PRAESENSA system.

Chapter 7 describes the diagnostic event structures.

Chapter 7.4.71 describes the event originator structures.

Chapter 9 gives an overview of all constants used in the open interface protocol and

application messages.

Chapter 10 gives an overview of all error codes that can be sent back in the response

messages.

1.6 How to read this document

In this document many messages are described which should be transmitted over the

TCP connection. The description of each message is divided into several (optional)

subsections. The meaning of each section is described below:

• Purpose:

A global description of the purpose of the message. In case a group of messages is

described (all using the same message structure), a short description is given for

each message.

• Parameter structure:

The parameters related to the message. When the message requires no parameters,

no structure is described here.

• Response message type:

In case the message is a command, the system controller returns a response

message. In this section the response message type is referenced. Note that the

described message is only valid when the response signals that the command

succeeded without errors.

Beside the described response messages it is also possible that the

MESSAGETYPE_OIP_ResponseProtocolError is returned in case on protocol level a

failure is detected.

• Update notifications:

The notification messages that can be generated during the execution of the remote

function. When there are no related notifications, then this part will be omitted.

• Related messages:

The related messages in conjunction with the message described.

1.7 Open Interface changes

The following changes were made to the Open Interface that might affect existing

implementations of the protocol

As of software release 1.30, the command messages

MESSAGETYPE_OIP_GetConfiguredUnits and

25 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

MESSAGETYPE_OIP_GetConnectedUnits return both the configured unit name and the

host name instead of the configured host name (refer to §5.9)

26 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

2. APPLICATION CONTROL OVERVIEW

2.1 Calls

2.1.1 Introduction

As PRAESENSA is a public address and emergency sound system, it is used to

distribute background music, live speech and evacuation messages. All audio in the

system is distributed in the form of calls.

2.1.2 Components

A call always consists of the following components:

• Priority (refer to section 2.1.3)

• Call content (refer to section 2.1.4)

• Routing (refer to section 2.1.5)

2.1.3 Priority

To each call, a priority is assigned. When two or more calls are addressed to the same

zone or need shared resources (e.g. the message player), the system only starts the call

with the highest priority. The range of priorities that is available for a call depends on the

type of call.

The emergency call can only be created when emergency control (in the system

controller configuration) in enabled.

Priority Call type

0 to 31 BGM (Background Music) calls.

32 to 223 Business calls.

224 to 255 Emergency calls.

2.1.4 Call content

The content of a BGM call typically consists of an audio signal coming from a BGM

source, such as a CD player or a tuner. The content of business calls and emergency

calls can consist of:

• A start chime (optional).

• Pre-recorded message(s) (optional)

• Live speech (optional).

• An end chime (optional).

The major difference between business calls and emergency calls is that emergency

calls can put the system in the emergency state.

2.1.5 Routing

The routing of the call is the set of zones to which the call is intended to be addressed.

Whether the call actually is addressed to the selected zones depend on the priority of

the call and its partiality (refer to §4.5).

27 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

2.1.6 Restart call

A call can be configured to be automatically restarted when it is aborted by the system

(for example when all zones are removed from the call). If the restart call option is not

configured, the system will automatically restart all emergency calls without live-speech.

The restart call option matches the ‘Continue call’ option on the PRAESENSA call macro

configuration page.

2.2 Diagnostics

As PRAESENSA is an emergency compliant system, it monitors its equipment and

signals activity performed on the system.

Systems connected to a PRAESENSA system can subscribe to activity and equipment

signals for long term storage and reporting facilities. To receive events from the

PRAESENSA system, the connected system must subscribe. The following groups are

identified:

• General Events

• Call Events

• Fault Events

After subscription for a group, all events currently present in the storage of the

PRAESENSA system are sent. Existing events are signaled with the action-type

OIACT_EXISTING. The last existing event is signaled with the action type

OIACT_EXISTING_LAST. If the connected system subscribes to receive fault events

and there are no fault events in the storage of the PRAESENSA system, the

PRAESENSA system responds with a message with the action type

OIACT_EXISTING_LAST and an event of type DET_NoFaults (see paragraph 7.4.13).

The event itself does not represent an actual system fault and is supposed to be

ignored.

Newly created and updated events are notified conform the action described in section

9.2.9.

Fault events can be acknowledged and reset by the connected system. The system can

choose to acknowledge all fault or specific faults.

2.3 Hardware connection

The communication between PRAESENSA and your system is based on top of a

TCP/IP connection (refer to the next figure).

PRAESENSA

System

Your

System
TCP/IP

Over the TCP/IP connection, messages can be transmitted between your system and

PRAESENSA. To set-up the TCP/IP connection, you must:

• Use the IP address of the system controller.

• Use port number 9401 (non-secure) or 9403 (secure).

28 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

3. PROTOCOL CONSIDERATIONS

3.1 Set-up a connection

After PRAESENSA has been started, the system controller listens to port 9401 and

9403. The set-up of the TCP/IP connection must originate from your system using the IP

address of the system controller and port 9401 or port 9403. The connection between

the PRAESENSA system and your system is based on a stream connection. This

implies that messages may be transferred using multiple packets.

Port 9401 is used for non-secure connections and port 9403 is used for secure

connections. For secure connections, TLS 1.2 or TLS 1.3 is used, depending on the

configuration. The PRAESENSA system uses a self-signed certificate file and is

available for download from the PRAESENSA configuration web page (see

[UG_PRAESENSA]). A new certificate is generated for the system each time the system

controller is reset to defaults. After the socket connect has been established, the login

message (MESSAGETYPE_OIP_Login) is expected before any other message. The

login message passes the user name and password to PRAESENSA for verification. If

either the user name or the password is incorrect, an error is reported back. In this case,

the socket connection is disconnected on demand of the system controller. If the user

name and password are correct, all control functions of PRAESENSA become available.

3.2 Heartbeat

After the connection between your system and PRAESENSA has been established, the

system controller of PRAESENSA starts the heartbeat checks of your system. The

system controller checks if a message is received within 15 seconds after the last

message. When the time between two messages is more than 15 seconds, the system

controller considers the connection to be broken and closes the TCP/IP connection to

your system.

It is advised to also run heartbeat checks of PRAESENSA on your system. To signal that

the connection is still present, you must transmit a "MESSAGETYPE_OIP_KeepAlive"

message (refer to section 3.4.3.3) to the system controller every 5 seconds when no

other messages are ready for transmission.

3.3 Response times

When your system sends a message to the system controller, a response can be

expected within 10 seconds. If your system does not receive a response within 10

seconds, your system can consider the connection to be broken.

3.4 Message format

3.4.1 Introduction

The communication between your system and PRAESENSA is based on messages.

This section describes the structures that are used in the data field of the messages for

PRAESENSA.

3.4.2 General Message Layout

Each message must have this layout:

29 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

MessageTy

pe

Length Data

Defined in (c-style) structure format:

struct {

 DWORD messageType; // Message Type

 UINT length; // Message Length

 BYTE data[]; // Message Data (length – 8 bytes)

};

Where:

messageType The “message-type”, which describes the content of the

actual data passed. Refer to the various message-type

definitions in sections below (§4, §5 and §6)

length The total length of the message in number of bytes,

including the sizes of the message-type and length. The

length must match the actual transmitted size of bytes.

Since the MessageType and the length are always

present, the minimum size of the message is 8 bytes. The

maximum size of a message is 128 Kbytes.

data Data corresponding to the description of the message-

type. The data represents a structure which format is

explained hereafter together with the message-type.

NOTE:

The length of a specific message-type may vary due to the variable data. For example,

when a message contains multiple strings, the length also depends on the sum of the

sizes of the strings.

3.4.3 Conventions

In the sections and chapters below several structures are defined. These structures are

defined using standard data types, which have defined sizes and usage. The following

data types will be used:

3.4.3.1 Basic data types

BOOLEAN: a 1 byte unsigned value with the values FALSE = 0 and TRUE = 1.

CHAR: a 1 byte type representing an ASCII character.

BYTE: a 1 byte unsigned value with the range 0 ... 255.

WORD: a 2 byte unsigned value with the range 0 ... 65535.

SHORT: a 2 byte signed value with the range -32768 ... 32767.

INT: a 4 bytes signed value with the range -(231) ... (231-1).

UINT: a 4 byte unsigned value with the range 0 ... (232-1).

LONG: a 4 bytes signed value with the range -(231) ... (231-1).

DWORD: a 4 byte unsigned value with the range 0 ... (232-1).

30 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

NOTE:

All numbers are represented in the little-endian1 format. Between the data-type is no

alignment present.

3.4.3.2 Variable length Data types

Beside the basic data type, variable length data types are used within the messages. In

this section the variable length data types are described in term of basic data types.

String

A string is used to pass ASCII text within a message. A string is always variable in

length.

struct {

 UINT length

 CHAR chars[Length];

} STRING;

Where:

length String length in bytes (characters). Strings are limited

in length to a maximum of 64 Kbytes. Note that the

size of the length parameter is not included in the

length.

chars Actual string, not zero terminated.

Time structure

A time structure represents the date and time. It is generated by the PRAESENSA

system. The time is mostly passed along with diagnostic events (see §7) to indicate

the actual date and time of creation and other changes.

struct {

 DWORD time;

} TIME;

Where:

time UTC time in seconds since 1 January 1970, 00:00:00

hour.

Complex structure

Message can refer to structural information. These structures by itself described a

complete set of information and will be described in the corresponding sections. The

basic format of each structure is as follows:

struct {

 DWORD structureType; // Type of the structure.

 UINT length; // structure Length.

 BYTE data[] // structure data (length – 4 bytes)

} structureHeader;

1 Little endian is a storage mechanism where the least significant byte is stored on the lowest address, followed by the more

significant bytes. E.g. a WORD is represented in memory as two consecutive bytes where the LSB is stored on the lowest

address and the MSB on the next address. For transmission over TCP, the LSB byte is transmitted first, followed by the MSB

bytes

31 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where:

structureType Defines the “structure Type”, which describes the

content of the structure data passed. Refer to the

various structure type definitions in the sections

below (§7 and §7.4.13).

length The total length of the structure in number of bytes,

including the sizes of the structure type and length.

The length should match the actual transmitted size

of bytes.

data Data corresponding to the description of the

structure-type. The data represents a structure which

format is explained with the structure-type.

3.4.3.3 Comma separated lists

Commands sent to the PRAESENSA system do not accept spaces around the

separation commas in lists of strings. However, notifications and results sent from the

PRAESENSA system may contain a space after the separation comma.

3.5 Heartbeat message MESSAGETYPE_OIP_KeepAlive

Purpose:

The heartbeat message is a special message, which can be sent to the

PRAESENSA system at any time. In normal circumstances the heartbeat message

is transmitted every 5 seconds (when nothing else to transmit). The message is used

to notify the PRAESENSA system that your system is still alive. The PRAESENSA

system also sends heartbeat messages to indicate that the PRAESENSA system is

still operational. You must check if two successive messages are received within 15

seconds.

Note that the heartbeat message is similar to the notification messages.

Parameter structure:
struct {

 DWORD messageType;

 UINT length;

 UINT reserved1;

 UINT reserved2;

} OIP_KeepAlive;

Where:

messageType The message type indicator for the heartbeat message.

Constant value MESSAGETYPE_OIP_KeepAlive (See

Chapter 9).

length The total length of the Heartbeat message (16 bytes for

this message).

reserved1 Session sequence number. Currently the reserved1 is not

used and should be set to the value zero (0).

reserved2 Message sequence number. Currently the reserved2 is

not used and should be set to the value zero (0).

32 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

3.6 Protocol fault message MESSAGETYPE_OIP_ResponseProtocolError

Purpose:

Any message sent towards the PRAESENSA system is checked against its

boundaries (message size, string size, validity of the message-type, not logged in

…). In case a mismatch is detected regarding the size, a universal error response

message is returned. Response message as described in section 5 cannot be used,

because the received message is not decoded nor processed.

Parameter structure:
struct {

 DWORD messageType;

 UINT length;

 UINT reserved1;

 UINT reserved2;

 UINT errorCode;

 UINT errorPosition;

} OIP_ResponseProtocolError;

Where:

messageType The message type indicator for the message. Constant

value MESSAGETYPE_OIP_ResponseProtocolError

(See Chapter 9).

length The total length of the Protocol fault message (24 bytes

for this message).

reserved1 Session sequence number. Currently the reserved1 is not

used and should be set to the value zero (0).

reserved2 Message sequence number. Currently the reserved2 is

not used and should be set to the value zero (0).

errorCode The error code of the received message. For the possible

error codes see Chapter 10.

errorPosition The byte offset in the message stream, where the fault is

detected.

Related messages:

Any message received by the PRAESENSA system and is not conform the message

guideline as described in 3.4.

3.7 Buffer overflow

Purpose:

Messages ready for transmission from the PRAESENSA system are queued. In

case the receive speed of the connected system is too low, the queue may overflow

(dependent on the number of generated events, resource update, etc.). Since the

queue consumes internal PRAESENSA system resources, overflow detection is

present, which disconnects the communication interface when the queue overflows

its limit.

This may result in a loss of received events.

33 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4. COMMAND MESSAGES

4.1 Introduction

Command messages can be sent to control the PRAESENSA system. Commands

always result in a response from the PRAESENSA system. The expected response is

referenced with each command or the generic response

MESSAGETYPE_OIP_ResponseProtocolError is returned in case the message is

corrupted. Each command message starts with a fixed number of fields, which are

presented below in structure format.

NOTE:

In the time between the transmission of the command message and the reception of the

response message, the PRAESENSA system can send notification messages.

struct {

 DWORD messageType;

 UINT length;

 UINT reserved1;

 UINT reserved2;

} COMMANDHEADER;

Where:

messageType The command message type as documented in the

sections below.

length The total length of the command structure.

reserved1 Session sequence number. Currently the reserved1 is not

used and should be set to the value zero (0)

reserved2 Message sequence number. Currently the reserved2 is

not used and should be set to the value zero (0).

NOTE:

The initial two elements (refer to section 3.4.2) are repeated in the structure.

4.2 MESSAGETYPE_OIP_Login

Purpose:

Logs in on the PRAESENSA system with a user name and password.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING userName;

 STRING password;

} OIP_Login;

Where:

header Header of the message, where the messageType

element is equal to MESSAGETYPE_OIP_Login.

userName The user name to logon with.

password The password to logon with.

34 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Response message type:

MESSAGETYPE_OIP_Response

4.3 MESSAGETYPE_OIP_GetNcoVersion

Purpose:

Gets the software release of the PRAESENSA system.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetNcoVersion;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetNcoVersion.

Response message type:

MESSAGETYPE_OIP_ResponseGetNcoVersion

4.4 MESSAGETYPE_OIP_GetProtocolVersion

Purpose:

Gets the protocol version of the Open Interface of the PRAESENSA system. Should

be used to verify that your system is compatible with the PRAESENSA system.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetProtocolVersion;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetProtocolVersion.

Response message type:

MESSAGETYPE_OIP_ResponseGetProtocolVersion

4.5 MESSAGETYPE_OIP_CreateCallEx2

Purpose:

Creates (but does not start) a call with the given parameters.

Parameter structure:
struct {

 COMMANDHEADER header;

 UINT priority;

 TOICallOutputHandling outputHandling;

 TOICallStackingMode stackingMode;

 UINT stackingTimeout;

 BOOLEAN liveSpeech;

 UINT repeat;

 STRING routing;

35 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 STRING startChime;

 STRING endChime;

 STRING audioInput;

 STRING messages;

 TOICallTiming callTiming;

 STRING preMonitorDest;

 UINT liveSpeechAttenuation;

 UINT startChimeAttenuation;

 UINT sendChimeAttenuation;

 UINT messageAttenuation;

} OIP_CreateCallEx2;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_CreateCallEx2.

priority Priority of the call.

Ranges:

0 … 31: BGM call priority. Always partial call,

regardless the partial setting.

32 … 223: Normal call priority.

224 … 255: Emergency call priority. Always partial

call, regardless the partial setting.

When emergency control (in the

system controller configuration) is

disabled, then this method will return

a parameter error.

outputHandling Whether the call is partial or stacked. There are two

possible values: OICOH_PARTIAL and

OICOH_STACKED. Stacked calls are supported in the

PRAESENSA system release 2.10 and newer. See

§9.2.11 for the value set description. Settings the output

handling to anything other than OICOH_PARTIAL or

OICOH_STACKED will result in

ERROR_INVALID_PARAMETERS. Note that the PRA-

LSCRF license is required to use the stacked call function.

Specifying OICOH_STACKED without the license results

in ERROR_INVALID_PARAMETERS.

stackingMode Whether a stacked call waits for all zones to become

available or a stacked call waits for each zone to become

available for replay. There are two possible values:

OICSM_WAIT_FOR_ALL and OICSM_WAIT_FOR_EACH.

See §9.2.12 for the value set description. This parameter is

ignored when outputHandling is set to OICOH_PARTIAL.

stackingTimeout Amount of seconds for a stacked call to wait for available

resources. The time-out countdown is started at the

moment the original call has ended. The accepted range is

1 to 3600 seconds; the value OICST_INFINITE is used to

36 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

wait infinitely. This parameter is ignored when

outputHandling is set to OICOH_PARTIAL.

liveSpeech Whether or not the call has a live speech phase. TRUE =

live speech, FALSE = no live speech.

repeat How many times the messages should be repeated.

Value can be:

-1: Repeat infinity.

0: Play Message once.

1 … 32767: Repeat count.

Note that the value 1 indicates one repeat, so the message

is played twice.

routing List of names of zone groups, zones and/or control

outputs. The routing is formatted as a comma separated

set of resource names. No spaces are allowed before or

after the separation commas in the string.

startChime The name of the start chime. May be empty, no leading or

trailing spaces are allowed.

endChime The name of the end chime. May be empty, no leading or

trailing spaces are allowed.

audioInput Name of the audio Input (only used when live speech is

true). No leading or trailing spaces are allowed.

messages List of names of prerecorded messages. The messages

parameter is formatted as a comma separated set of

message names. May be empty, but no spaces are

allowed before or after the separation commas.

callTiming Indicates the way the call must be handled. There are

three possible values: OICTM_IMMEDIATE,

OICTM_TIME_SHIFTED and OICTM_MONITORED. Time

shifted calls are supported in PRAESENSA release 2.00

and newer. See §9.2.13 for the value set description.

Setting the call timing to OICTM_MONITORED will result

in ERROR_INVALID_PARAMETERS. Note that the PRA-

LSCRF license is required to use the time-shift function.

Specifying OICTM_TIME_SHIFTED without the license

results in ERROR_INVALID_PARAMETERS.

preMonitorDest The destination zone of the pre-monitor phase of a pre-

monitored call. When the call is not pre-monitored, this

value is ignored. This parameter is ignored when

callTiming is set to OICTM_IMMEDIATE or

OICTM_TIME_SHIFTED.

37 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

liveSpeechAttenuati

on

The attenuation to be used for the audio input during the

live speech phase. Range: 0..60 dB.

startChimeAttenuati

on

The attenuation to be used for the chime generator during

the start chime phase. Range: 0..60 dB.

endChimeAttenuatio

n

The attenuation to be used for the chime generator during

the end chime phase. Range: 0..60 dB.

messageAttenuation The attenuation to be used for the message generator

during the start prerecorded message phase. Range: 0..60

dB.

Response message type:

MESSAGETYPE_OIP_ResponseCallId.

Related messages:

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_AddToCall

MESSAGETYPE_OIP_RemoveFromCall

4.6 MESSAGETYPE_OIP_CreateCallEx3

Purpose:

Creates (but does not start) a call with the given parameters.

Parameter structure:
struct {

 COMMANDHEADER header;

 UINT priority;

 TOICallOutputHandling outputHandling;

 TOICallStackingMode stackingMode;

 UINT stackingTimeout;

 BOOLEAN liveSpeech;

 UINT repeat;

 STRING routing;

 STRING startChime;

 STRING endChime;

 STRING audioInput;

 STRING messages;

 TOICallTiming callTiming;

 STRING preMonitorDest;

 UINT liveSpeechAttenuation;

 UINT startChimeAttenuation;

 UINT sendChimeAttenuation;

 UINT messageAttenuation;

 BOOLEAN restartCall;

} OIP_CreateCallEx3;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_CreateCallEx2.

priority Priority of the call.

Ranges:

38 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

0 … 31: BGM call priority. Always partial call,

regardless the partial setting.

32 … 223: Normal call priority.

224 … 255: Emergency call priority. Always partial

call, regardless the partial setting.

When emergency control (in the

system controller configuration) is

disabled, then this method will return

a parameter error.

outputHandling Whether the call is partial or stacked. There are two

possible values: OICOH_PARTIAL and

OICOH_STACKED. Stacked calls are supported in the

PRAESENSA system release 2.10 and newer. See

§9.2.11 for the value set description. Settings the output

handling to anything other than OICOH_PARTIAL or

OICOH_STACKED will result in

ERROR_INVALID_PARAMETERS. Note that the PRA-

LSCRF license is required to use the stacked call function.

Specifying OICOH_STACKED without the license results

in ERROR_INVALID_PARAMETERS.

stackingMode Whether a stacked call waits for all zones to become

available or a stacked call waits for each zone to become

available for replay. There are two possible values:

OICSM_WAIT_FOR_ALL and OICSM_WAIT_FOR_EACH.

See §9.2.12 for the value set description. This parameter is

ignored when outputHandling is set to OICOH_PARTIAL.

stackingTimeout Amount of seconds for a stacked call to wait for available

resources. The time-out countdown is started at the

moment the original call has ended. The accepted range is

1 to 3600 seconds; the value OICST_INFINITE is used to

wait infinitely. This parameter is ignored when

outputHandling is set to OICOH_PARTIAL.

liveSpeech Whether or not the call has a live speech phase. TRUE =

live speech, FALSE = no live speech.

repeat How many times the messages should be repeated.

Value can be:

-1: Repeat infinity.

0: Play Message once.

1 … 32767: Repeat count.

Note that the value 1 indicates one repeat, so the message

is played twice.

39 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

routing List of names of zone groups, zones and/or control

outputs. The routing is formatted as a comma separated

set of resource names. No spaces are allowed before or

after the separation commas in the string.

startChime The name of the start chime. May be empty, no leading or

trailing spaces are allowed.

endChime The name of the end chime. May be empty, no leading or

trailing spaces are allowed.

audioInput Name of the audio Input (only used when live speech is

true). No leading or trailing spaces are allowed.

messages List of names of prerecorded messages. The messages

parameter is formatted as a comma separated set of

message names. May be empty, but no spaces are

allowed before or after the separation commas.

callTiming Indicates the way the call must be handled. There are

three possible values: OICTM_IMMEDIATE,

OICTM_TIME_SHIFTED and OICTM_MONITORED. Time

shifted calls are supported in PRAESENSA release 2.00

and newer. See §9.2.13 for the value set description.

Setting the call timing to OICTM_MONITORED will result

in ERROR_INVALID_PARAMETERS. Note that the PRA-

LSCRF license is required to use the time-shift function.

Specifying OICTM_TIME_SHIFTED without the license

results in ERROR_INVALID_PARAMETERS.

preMonitorDest The destination zone of the pre-monitor phase of a pre-

monitored call. When the call is not pre-monitored, this

value is ignored. This parameter is ignored when

callTiming is set to OICTM_IMMEDIATE or

OICTM_TIME_SHIFTED.

liveSpeechAttenuati

on

The attenuation to be used for the audio input during the

live speech phase. Range: 0..60 dB.

startChimeAttenuati

on

The attenuation to be used for the chime generator during

the start chime phase. Range: 0..60 dB.

endChimeAttenuatio

n

The attenuation to be used for the chime generator during

the end chime phase. Range: 0..60 dB.

messageAttenuation The attenuation to be used for the message generator

during the start prerecorded message phase. Range: 0..60

dB.

restartCall Indicates if the call should be restarted after an

interruption.

Response message type:

MESSAGETYPE_OIP_ResponseCallId.

40 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Related messages:

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_AddToCall

MESSAGETYPE_OIP_RemoveFromCall

4.7 MESSAGETYPE_OIP_StartCreatedCall

Purpose:

Starts a previously created call. If the call was started successfully, call state update

notification messages are sent.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOICallId callId;

} OIP_StartCreatedCall;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_StartCreatedCall.

callId Identification of the call, returned by createCallEx2 (§4.5)

and createCallEx3 (§4.6). See §9.2.2 for the value set

description.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyCall

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_AddToCall

MESSAGETYPE_OIP_RemoveFromCall

4.8 MESSAGETYPE_OIP_StopCall

Purpose:

Stops a previously created or started call.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOICallId callId;

} OIP_StopCall;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_StopCall.

41 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

callId Identification of the call, returned by createCallEx2 (§4.5)

or createCallEx3 (§4.6). See §9.2.2 for the value set

description.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyCall

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_AddToCall

MESSAGETYPE_OIP_RemoveFromCall

4.9 MESSAGETYPE_OIP_AbortCall

Purpose:

Aborts a previously created or started call.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOICallId callId;

} OIP_AbortCall;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_AbortCall.

callId Identification of the call, returned by createCallEx2 (§4.5)

or createCallEx3 (§4.6). See §9.2.2 for the value set

description.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyCall

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AddToCall

MESSAGETYPE_OIP_RemoveFromCall

42 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.10 MESSAGETYPE_OIP_AddToCall

Purpose:

Adds routing to a previously created or started call.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOICallId callId;

 STRING routing;

} OIP_AddToCall;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_AddToCall.

callId Identification of the call, returned by createCallEx2 (§4.5)

or createCallEx3 (§4.6). See §9.2.2 for the value set

description.

routing List of names of zone groups, zones and/or control outputs

to be added to the call. A comma separates each name in

the routing list. No spaces are allowed before or after the

separation commas in the string.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_RemoveFromCall

4.11 MESSAGETYPE_OIP_RemoveFromCall

Purpose:

Removes routing from a previously created or started call.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOICallId callId;

 STRING routing;

} OIP_RemoveFromCall;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_RemoveFromCall.

43 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

callId Identification of the call, returned by createCallEx2 (§4.5)

or createCallEx3 (§4.6). See §9.2.2 for the value set

description.

routing List of names of zone groups, zones and/or control outputs

to be removed from the call. A comma separates each

name in the routing list. No spaces are allowed before or

after the separation commas in the string.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_AddToCall

4.12 MESSAGETYPE_OIP_CancelAll

Purpose:

Cancels all available stacked calls that were started by this connection.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_CancelAll;

Where:

header Header of the message, where the messageType

element is equal to MESSAGETYPE_OIP_CancelAll.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyCall

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_CancelLast

4.13 MESSAGETYPE_OIP_CancelLast

Purpose:

Cancels (if still available) the last stacked call that was started by this connection.

44 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_CancelLast;

Where:

header Header of the message, where the messageType

element is equal to MESSAGETYPE_OIP_CancelLast.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyCall

MESSAGETYPE_OIP_NotifyResources

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_CancelAll

4.14 MESSAGETYPE_OIP_AckAllFaults

Purpose:

Acknowledges all fault events. Because the fault alarm depends on the states of all

fault events, it also acknowledge the fault alarm. If the start of the fault alarm

changes state, it results in the message MESSAGETYPE_OIP_NotifyAlarm (if

subscribed, see §6.3).

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_AckAllFaults;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_AckAllFaults.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_FAULT)

MESSAGETYPE_OIP_NotifyDiagEvent

Related messages:

MESSAGETYPE_OIP_ResetAllFaults

MESSAGETYPE_OIP_ReportFault

4.15 MESSAGETYPE_OIP_ResetAllFaults

Purpose:

Resets all fault events. Because the fault alarm depends on the state of all fault

events, this can possibly reset the fault alarm, when the faults are resolved. If the

45 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

fault alarm changes state, it results in the message

MESSAGETYPE_OIP_NotifyAlarm (if subscribed, see §6.3).

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_ResetAllFaults;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_ResetAllFaults.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_FAULT)

MESSAGETYPE_OIP_NotifyDiagEvent

Related messages:

MESSAGETYPE_OIP_AckAllFaults

MESSAGETYPE_OIP_ReportFault

4.16 MESSAGETYPE_OIP_ReportFault

Purpose:

Reports a general fault diagnostics event in the system. The fault is reported as a

User-Injected-Fault, which is notified as diagnostic event DET_UserInjectedFault.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING description;

} OIP_ReportFault;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ReportFault.

description Textual representation of the fault to be reported.

Response message type:

MESSAGETYPE_OIP_ResponseReportFault

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_FAULT)

MESSAGETYPE_OIP_NotifyDiagEvent

Related messages:

MESSAGETYPE_OIP_AckAllFaults

MESSAGETYPE_OIP_ResetAllFaults

MESSAGETYPE_OIP_AckFault

MESSAGETYPE_OIP_ResolveFault

MESSAGETYPE_OIP_ResetFault

46 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.17 MESSAGETYPE_OIP_AckFault

Purpose:

Acknowledges a specific diagnostic fault event. Because the fault alarm depends on

the states of all fault events, it can possibly acknowledge the state of the fault alarm

of the system (in case it was the last non-acknowledged fault). If the state of the fault

alarm changes, it results in the message MESSAGETYPE_OIP_NotifyAlarm (if

subscribed, see §6.3).

Parameter structure:
struct {

 COMMANDHEADER header;

 TOIEventId eventId;

} OIP_AckFault;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_AckFault.

eventId Identification of the diagnostic fault event. See §9.2.1 for

the value set description.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_FAULT)

MESSAGETYPE_OIP_NotifyDiagEvent

Related messages:

MESSAGETYPE_OIP_AckAllFaults

MESSAGETYPE_OIP_ResetAllFaults

MESSAGETYPE_OIP_ReportFault

MESSAGETYPE_OIP_ResolveFault

MESSAGETYPE_OIP_ResetFault

4.18 MESSAGETYPE_OIP_ResolveFault

Purpose:

Resolves the fault injected by with the message MESSAGETYPE_OIP_ReportFault.

The received eventId of the reportFault message is the parameter.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOIEventId eventId;

} OIP_ResolveFault;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ResolveFault.

eventId Identification of the diagnostic fault event, received by the

MESSAGETYPE_OIP_ResponseReportFault message.

See §9.2.1 for the value set description.

47 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyDiagEvent

Related messages:

MESSAGETYPE_OIP_ReportFault

MESSAGETYPE_OIP_AckFault

MESSAGETYPE_OIP_ResetFault

4.19 MESSAGETYPE_OIP_ResetFault

Purpose:

Resets a specific diagnostic fault event. Because the fault alarm depends on the

states of all fault events, it can possibly reset the state of the fault alarm of the

system (in case it was the last non-reset fault). If the state of the fault alarm

changes, it results in the message MESSAGETYPE_OIP_NotifyAlarm (if subscribed,

see §6.3).

Parameter structure:
struct {

 COMMANDHEADER header;

 TOIEventId eventId;

} OIP_ResetFault;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ResetFault.

eventId Identification of the diagnostic fault event. See §9.2.1 for

the value set description.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_FAULT)

MESSAGETYPE_OIP_NotifyDiagEvent

Related messages:

MESSAGETYPE_OIP_AckAllFaults

MESSAGETYPE_OIP_ResetAllFaults

MESSAGETYPE_OIP_AckFault

MESSAGETYPE_OIP_ReportFault

MESSAGETYPE_OIP_ResolveFault

4.20 MESSAGETYPE_OIP_AckEvacAlarm

Purpose:

This message acknowledges the emergency alarm. If the state of the emergency

alarm changes, it results in the message MESSAGETYPE_OIP_NotifyAlarm (if

subscribed, see §4.31). When emergency control (in the system controller

configuration) is disabled, then this method will return a parameter error.

48 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_AckEvacAlarm;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_AckEvacAlarm.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_EVAC)

Related messages:

MESSAGETYPE_OIP_ResetEvacAlarmEx

4.21 MESSAGETYPE_OIP_ResetEvacAlarmEx

Purpose:

Resets the emergency alarm. Whether or not running evacuation priority calls are

aborted can be specified. If the state of the emergency alarm changes, it results in

the message MESSAGETYPE_OIP_NotifyAlarm (if subscribed, see §4.31). When

emergency control (in the system controller configuration) is disabled, then this

method will return a parameter error.

Parameter structure:
struct {

 COMMANDHEADER header;

 BOOLEAN bAbortEvacCalls

} OIP_ResetEvacAlarmEx;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_ResetEvacAlarmEx.

bAbortEvacCalls Whether or not currently running evacuation priority calls

must be aborted. TRUE = abort running evacuation

priority calls, FALSE = do not abort running evacuation

priority calls

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm (alarm-type equals OIAT_EVAC)

Related messages:

MESSAGETYPE_OIP_AckEvacAlarm

MESSAGETYPE_OIP_ResetEvacAlarm

49 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.22 MESSAGETYPE_OIP_IncrementBgmVolume

Purpose:

Increments the BGM volume of the passed routing with 3 dB. Note: The BGM

volume in a zone cannot exceed the configured maximum BGM volume.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING routing;

} OIP_IncrementBgmVolume;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_IncrementBgmVolume.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

Response message type:

MESSAGETYPE_OIP_Response

Related messages:

MESSAGETYPE_OIP_DecrementBgmVolume

MESSAGETYPE_OIP_SetBgmVolume

4.23 MESSAGETYPE_OIP_IncrementBgmChannelVolume

Purpose:

Increments the BGM volume of a channel with 3 dB. Note: The BGM volume in a

zone cannot exceed the configured maximum BGM volume.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING channel;

} OIP_IncrementBgmChannelVolume;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_IncrementBgmVolume.

channel The BGM channel name as present in the PRAESENSA

configuration.

Response message type:

MESSAGETYPE_OIP_Response

Related messages:

MESSAGETYPE_OIP_DecrementBgmChannelVolume

MESSAGETYPE_OIP_SetBgmVolume

MESSAGETYPE_OIP_GetBgmChannelNames

50 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.24 MESSAGETYPE_OIP_DecrementBgmVolume

Purpose:

Decrements the BGM volume of the passed routing with 3 dB. Note: The BGM

volume in a zone cannot drop below the configured minimum BGM volume.

Parameter structure:
Struct {

 COMMANDHEADER header;

 STRING routing;

} OIP_DecrementBgmVolume;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_DecrementBgmVolume.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

Response message type:

MESSAGETYPE_OIP_Response

Related messages:

MESSAGETYPE_OIP_IncrementBgmVolume

MESSAGETYPE_OIP_SetBgmVolume

4.25 MESSAGETYPE_OIP_DecrementBgmChannelVolume

Purpose:

Decrements the BGM volume of a channel with 3 dB. Note: The BGM volume in a

zone cannot drop below the configured minimum BGM volume.

Parameter structure:
Struct {

 COMMANDHEADER header;

 STRING channel;

} OIP_DecrementBgmChannelVolume;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_DecrementBgmChannelVolume.

channel The BGM channel name as present in the PRAESENSA

configuration.

Response message type:

MESSAGETYPE_OIP_Response

Related messages:

MESSAGETYPE_OIP_IncrementBgmChannelVolume

MESSAGETYPE_OIP_SetBgmVolume

MESSAGETYPE_OIP_GetBgmChannelNames

51 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.26 MESSAGETYPE_OIP_SetBgmVolume

Purpose:

Sets the BGM volume of the given routing. Note: The BGM volume in a zone cannot

exceed the configured maximum BGM volume or drop below the configured

minimum BGM volume, except if the mute value (-96 dB) is used.

Parameter structure:
struct {

 COMMANDHEADER header;

 INT volume;

 STRING routing;

} OIP_SetBgmVolume;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_SetBgmVolume.

volume Volume of the BGM. Value range: 0 ... –96 (dB). Use –96

(dB) to mute the BGM.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

Response message type:

MESSAGETYPE_OIP_Response

Related messages:

MESSAGETYPE_OIP_IncrementBgmVolume

MESSAGETYPE_OIP_DecrementBgmVolume

4.27 MESSAGETYPE_OIP_AddBgmRouting

Purpose:

Adds a routing to a BGM channel. Either all specified routing is added or, in case of

an error, no routing at all.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING channel;

 STRING routing;

} OIP_AddBgmRouting;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_AddBgmRouting.

channel The BGM channel name as present in the PRAESENSA

configuration.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

52 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyBgmRouting

Related messages:

MESSAGETYPE_OIP_RemoveBgmRouting

MESSAGETYPE_OIP_ToggleBgmRouting

MESSAGETYPE_OIP_SetBgmRouting

4.28 MESSAGETYPE_OIP_RemoveBgmRouting

Purpose:

Removes a routing from a BGM channel. Either all specified routing is removed or, in

case of an error, no routing at all.

Parameter structure:
Struct {

 COMMANDHEADER header;

 STRING channel;

 STRING routing;

} OIP_RemoveBgmRouting;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_RemoveBgmRouting.

channel The BGM channel name as present in the PRAESENSA

configuration.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyBgmRouting

Related messages:

MESSAGETYPE_OIP_AddBgmRouting

MESSAGETYPE_OIP_ToggleBgmRouting

MESSAGETYPE_OIP_SetBgmRouting

4.29 MESSAGETYPE_OIP_ToggleBgmRouting

Purpose:

Toggles a routing in a BGM channel. When none of names in the specified routing

are part the BGM channel, all specified routing is added, else all supplied routing is

removed or, in case of an error, the current routing of the BGM channel remains

unchanged.

53 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING channel;

 STRING routing;

} OIP_ToggleBgmRouting;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ToggleBgmRouting.

channel The BGM channel name as present in the PRAESENSA

configuration.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyBgmRouting

Related messages:

MESSAGETYPE_OIP_AddBgmRouting

MESSAGETYPE_OIP_RemoveBgmRouting

MESSAGETYPE_OIP_SetBgmRouting

4.30 MESSAGETYPE_OIP_SetBgmRouting

Purpose:

Sets the routing of a BGM channel. Note that the specified routing replaces the

configured routing in the configuration of the PRAESENSA system.

Parameter structure:
Struct {

 COMMANDHEADER header;

 STRING channel;

 STRING routing;

} OIP_SetBgmRouting;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_SetBgmRouting.

channel The BGM channel name as present in the PRAESENSA

configuration.

routing List of names of zone groups and/or zones. A comma

separates each name in the routing list. No spaces are

allowed before or after the separation commas in the

string.

54 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyBgmRouting

Related messages:

MESSAGETYPE_OIP_AddBgmRouting

MESSAGETYPE_OIP_RemoveBgmRouting

MESSAGETYPE_OIP_ToggleBgmRouting

4.31 MESSAGETYPE_OIP_SetSubscriptionAlarm

Purpose:

Subscribes or unsubscribes to alarm notifications. Depending on the alarmtype

parameter, it subscribes to faults or emergency alarms. Only when a subscription is

set for the faults or emergency alarm, state notifications will be sent. When a

subscription is set, the MESSAGETYPE_OIP_NotifyAlarm message is sent with the

current state of the alarm.

Parameter structure:
struct {

 COMMANDHEADER header;

 TOIAlarmType alarmType;

 BOOLEAN subscription;

} OIP_SetSubscriptionAlarm;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_SetSubscriptionAlarm.

alarmType The alarm type to subscribe of unsubscribe, see §9.2.3.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyAlarm

4.32 MESSAGETYPE_OIP_SetSubscriptionResources

Purpose:

Subscribes or unsubscribes to resource (read zone groups, zones) state notifications

of particular resources. Only when a subscription is set for a resource, resource

state notifications are sent for that resource. When a subscription is set for a

resource, the MESSAGETYPE_OIP_NotifyResources message is sent with the

current state of that resource.

It is not possible to subscribe to control outputs. No updates will be triggered for

these resources.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING resourceNames;

55 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 BOOLEAN subscription;

} OIP_SetSubscriptionResources;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_SetSubscriptionResources.

resourceNames List of names of zone groups and/or zones. A comma

separates each name in the routing list. Resources already

having the subscription state are ignored. No spaces are

allowed before or after the separation commas in the

string.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyResources

4.33 MESSAGETYPE_OIP_SetSubscriptionResourceFaultState

Purpose:

Subscribes or unsubscribes to resource (read zone groups or zones) fault state

notifications of particular resources for faults that affect the audio distribution of that

zone or zone group. Only when a subscription is set for a resource, resource fault

state notifications are sent for that resource. When a subscription is set for a

resource, the MESSAGETYPE_OIP_NotifyResourceFaultState message is sent with

the current state of that resource.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING resourceNames;

 BOOLEAN subscription;

} OIP_SetSubscriptionResourceFaultState;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_SetSubscriptionResourceFaultStat

e.

resourceNames List of names of zone groups and/or zones. A comma

separates each name in the routing list. Resources already

having the subscription state are ignored. No spaces are

allowed before or after the separation commas in the

string. Subscription for control output resources is not

allowed.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

56 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyResourceFaultState

4.34 MESSAGETYPE_OIP_SetSubscriptionBgmRouting

Purpose:

Subscribes or unsubscribes to BGM routing notifications. Only when a subscription

is set for a BGM channel, BGM routing notifications are sent for that BGM channel.

When a subscription is set for a BGM channel, the

MESSAGETYPE_OIP_NotifyBgmRouting message is sent with the routing of that

BGM channel and with the addition parameter set to TRUE.

In case the BGM channel is not active due to a missing audio input in the

configuration then no subscription can be set and an ERROR_INTERNAL is

returned.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING channel;

 BOOLEAN subscription;

} OIP_SetSubscriptionBgmRouting;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_SetSubscriptionBgmRouting.

channel The BGM channel name as present in the PRAESENSA

configuration.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyBgmRouting

4.35 MESSAGETYPE_OIP_SetSubscriptionEvents

Purpose:

Subscribes or unsubscribes to diagnostic event notifications. Only when a

subscription is set for an event group, diagnostic event notifications are sent for that

group. When a subscription is set for an event group, the

MESSAGETYPE_OIP_NotifyDiagEvent message is sent with the diagnostic event of

that group.

Parameter structure:
struct {

 COMMANDHEADER header;

 TDiagEventGroup eventGroup;

57 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 BOOLEAN subscription;

} OIP_SetSubscriptionEvents;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_SetSubscriptionEvents.

eventGroup Group identification of the diagnostic events. The

associated event-types for each group is represented in

§9.3.2.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyDiagEvent

4.36 MESSAGETYPE_OIP_SetSubscriptionBgmVolume

Purpose:

Subscribes or unsubscribes to BGM volume notifications. Only when a subscription

is set for zone, BGM volume notifications are sent for that zone. When a subscription

is set for a zone, the MESSAGETYPE_OIP_NotifyBgmVolume message is sent with

the current volume of that zone.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING zones;

 BOOLEAN subscription;

} OIP_SetSubscriptionBgmVolume;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_SetSubscriptionBgmVolume.

zones The zone names as present in the PRAESENSA

configuration.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyBgmVolume

58 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.37 MESSAGETYPE_OIP_GetZoneNames

Purpose:

Retrieve the configured zone names from the PRAESENSA system. When the zone

group parameter is empty all zone names are returned otherwise the zone names in

that zone group are returned.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING zonegroup;

} OIP_GetZoneNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetZoneNames.

zoneGroup The zone group to get the names of.

Response message type:

MESSAGETYPE_OIP_ResponseNames

4.38 MESSAGETYPE_OIP_GetZoneGroupNames

Purpose:

Retrieve the configured zone group names from the PRAESENSA system.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetZoneGroupNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetZoneGroupNames.

Response message type:

MESSAGETYPE_OIP_ResponseNames

4.39 MESSAGETYPE_OIP_GetMessageNames

Purpose:

Retrieve the configured message names from the PRAESENSA system. Note that

the chimes on the PRAESENSA system are also messages, so the names of the

chimes will be part of the response to the GetMessageNames.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetMessageNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetMessageNames.

59 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Response message type:

MESSAGETYPE_OIP_ResponseNames

4.40 MESSAGETYPE_OIP_GetChimeNames

Purpose:

Retrieve the configured message names from the PRAESENSA system. Note that

this is the same list as returned by MESSAGETYPE_OIP_GetMessageNames.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetChimeNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetChimeNames.

Response message type:

MESSAGETYPE_OIP_ResponseNames

4.41 MESSAGETYPE_OIP_GetAudioInputNames

Purpose:

Retrieve the configured audio input names from the PRAESENSA system.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetAudioInputNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetAudioInputNames.

Response message type:

MESSAGETYPE_OIP_ResponseNames

4.42 MESSAGETYPE_OIP_GetBgmChannelNames

Purpose:

Retrieve the configured BGM channel names from the PRAESENSA system.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetBgmChannelNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetBgmChannelNames.

Response message type:

MESSAGETYPE_OIP_ResponseNames

60 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

4.43 MESSAGETYPE_OIP_GetConfigId

Purpose:

Retrieve the configuration identifier from the PRAESENSA system. This is a number

which is increased each time the configuration is saved.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetConfigId;

Where:

header Header of the message, where the messageType

element is equal to MESSAGETYPE_OIP_GetConfigId.

Response message type:

MESSAGETYPE_OIP_ResponseConfigId

4.44 MESSAGETYPE_OIP_ActivateVirtualControlInput

Purpose:

Activate a control input. If the virtual control input is already active then activating it

again will not have any effect.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING virtualControlInput;

} OIP_ActivateVirtualControlInput;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_ActivateVirtualControlInput.

virtualControlInput Name of the virtual control input to activate.

Response message type:

MESSAGETYPE_OIP_Response.

Related messages:

MESSAGETYPE_OIP_DeactivateVirtualControlInput

4.45 MESSAGETYPE_OIP_DeactivateVirtualControlInput

Purpose:

Deactivate a virtual control input. If the virtual control input is already inactive then

deactivating it again will not have any effect.

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING virtualControlInput;

61 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 TOIVirtualControlInputDeactivation deactivationType

} OIP_DeactivateVirtualControlInput;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_DeactivateVirtualControlInput.

virtualControlInput Name of the virtual control input to deactivate.

deactivationType Specifier how the associated action should be deactivated

(see §9.2.15).

Response message type:

MESSAGETYPE_OIP_Response.

Related messages:

MESSAGETYPE_OIP_ActivateVirtualControlInput

4.46 MESSAGETYPE_OIP_SetSubscriptionUnitCount

Purpose:

Subscribes or unsubscribes to unit count notifications. Only when a subscription is

set for the unit count, unit count updates will be sent. When a subscription is set, the

MESSAGETYPE_OIP_NotifyUnitCount message is sent with the current number of

connected units.

Parameter structure:
struct {

 COMMANDHEADER header;

 BOOLEAN subscription;

} OIP_SetSubscriptionUnitCount;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_SetSubscriptionUnitCount.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyUnitCount

4.47 MESSAGETYPE_OIP_SetSubscriptionVirtualControlInputs

Purpose:

Subscribes or unsubscribes to virtual control input state notifications. Only when a

subscription is set for virtual control inputs, state notifications are sent for virtual

control inputs. When a subscription is set, the

MESSAGETYPE_OIP_NotifyVirtualControlInputs message is sent with the current

state of the virtual control inputs.

62 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 COMMANDHEADER header;

 STRING virtualControlInputs;

 BOOLEAN subscription;

} OIP_SetSubscriptionVirtualControlInputs;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_SetSubscriptionVirtualControlInputs

.

virtualControlInputs List of names of virtual control inputs. A comma separates

each name in the routing list. Virtual control inputs already

having the subscription state are ignored. No spaces are

allowed before or after the separation commas in the

string.

subscription Whether to subscribe or unsubscribe. TRUE = subscribe,

FALSE = unsubscribe.

Response message type:

MESSAGETYPE_OIP_Response

Update notifications:

MESSAGETYPE_OIP_NotifyVirtualControlInputs

4.48 MESSAGETYPE_OIP_GetVirtualControlInputNames

Purpose:

Retrieve the configured virtual control input names from the PRAESENSA system.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetVirtualControlInputNames;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetVirtualControlInputNames.

Response message type:

MESSAGETYPE_OIP_ResponseNames

4.49 MESSAGETYPE_OIP_GetConfiguredUnits

Purpose:

Retrieve the configured units (along with the host name) from the PRAESENSA

system. Only the units that are enabled are returned.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetConfiguredUnits;

63 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetConfiguredUnits.

Response message type:

MESSAGETYPE_OIP_ResponseUnits

4.50 MESSAGETYPE_OIP_GetConnectedUnits

Purpose:

Retrieve the connected units (along with the host name) from the PRAESENSA

system. Only the units that are configured, enabled and connected with the correct

firmware version (units that can be controlled) are returned.

Parameter structure:
struct {

 COMMANDHEADER header;

} OIP_GetConnectedUnits;

Where:

header Header of the message, where the messageType

element is equal to

MESSAGETYPE_OIP_GetConnectedUnits.

Response message type:

MESSAGETYPE_OIP_ResponseUnits

64 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

5. RESPONSE MESSAGES

5.1 Introduction

The PRAESENSA system returns a response message after a command message has

been executed. This section describes the response messages returned in case no

protocol failures are detected (see §3.6). Section 5.1 describes the structure of the

response messages. In specific cases, the default response structure is extended with

additional information.

5.2 MESSAGETYPE_OIP_Response

Purpose:

Defines the general response of the commands that returned an error code and no

additional information. It contains the basic information for all response messages.

Parameter structure:
struct {

 DWORD messageType;

 UINT length;

 UINT reserved1;

 UINT reserved2;

 DWORD errorCode;

} RESPONSEHEADER;

Where:

messageType The response message type, which is equal to

MESSAGETYPE_OIP_Response.

length The total length of the response structure

reserved1 Session sequence number. Currently the reserved1 is not

used and should be set to the value zero (0)

reserved2 Message sequence number. Currently the reserved2 is

not used and should be set to the value zero (0).

errorCode The error code of the command this is a response for. For

the possible error codes see Chapter 10.

NOTE:

The initial two elements described in section 3.4.1, are repeated in this structure.

Related messages:

Any command message not described in the sections §5.

5.3 MESSAGETYPE_OIP_ResponseGetNcoVersion

Purpose:

Responses to the command message MESSAGETYPE_OIP_GetNcoVersion.

Parameter structure:
struct {

 RESPONSEHEADER header;

 STRING version;

} OIP_ResponseGetNcoVersion;

65 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_ResponseGetNcoVersion.

version Release of the system controller software. The release

label has no defined format.

Related messages:

MESSAGETYPE_OIP_GetNcoVersion

5.4 MESSAGETYPE_OIP_ResponseGetProtocolVersion

Purpose:

Responses to the command message MESSAGETYPE_OIP_GetProtocolVersion.

Parameter structure:
struct {

 RESPONSEHEADER header;

 STRING version;

} OIP_ResponseGetProtocolVersion;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_ResponseGetProtocolVersion.

version Version of the Open Interface protocol in the format “M.m”.

Where:

 M The major version number

 m The minor version number

Related messages:

MESSAGETYPE_OIP_GetProtocolVersion

5.5 MESSAGETYPE_OIP_ResponseCallId

Purpose:

Responses to the command message MESSAGETYPE_OIP_CreateCallEx2 and

MESSAGETYPE_OIP_CreateCallEx3.

Parameter structure:
struct {

 RESPONSEHEADER header;

 UINT callId;

} OIP_ResponseCallId;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ResponseCallId.

callId Unique identification of the call, which can be used in the

call-handling commands.

66 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Related messages:

MESSAGETYPE_OIP_CreateCallEx2

MESSAGETYPE_OIP_CreateCallEx3

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

MESSAGETYPE_OIP_AddToCall

MESSAGETYPE_OIP_RemoveFromCall

5.6 MESSAGETYPE_OIP_ResponseReportFault

Purpose:

Response to the command message MESSAGETYPE_OIP_ReportFault.

Parameter structure:
struct {

 RESPONSEHEADER header;

 TOIEventId eventId;

} OIP_ResponseReportFault;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ResponseReportFault.

eventId Unique identification of the fault event, which can be used

in the event handling commands.

Related messages:

MESSAGETYPE_OIP_ReportFault

MESSAGETYPE_OIP_AckFault

MESSAGETYPE_OIP_ResolveFault

MESSAGETYPE_OIP_ResetFault

5.7 MESSAGETYPE_OIP_ResponseNames

Purpose:

Responses to the command messages MESSAGETYPE_OIP_GetXXXNames.

Parameter structure:
struct {

 RESPONSEHEADER header;

 STRING names;

} OIP_ResponseNames;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ResponseNames.

names The requested names of the items. A comma separates

each name in the list.

Related messages:

MESSAGETYPE_OIP_GetZoneNames

MESSAGETYPE_OIP_GetZoneGroupNames

MESSAGETYPE_OIP_GetMessageNames

67 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

MESSAGETYPE_OIP_GetChimeNames

MESSAGETYPE_OIP_GetAudioInputNames

MESSAGETYPE_OIP_GetBgmChannelNames

MESSAGETYPE_OIP_GetVirtualControlInputNames

5.8 MESSAGETYPE_OIP_ResponseConfigId

Purpose:

Responses to the command message MESSAGETYPE_OIP_GetConfigId.

Parameter structure:
struct {

 RESPONSEHEADER header;

 UINT configId;

} OIP_ResponseGetConfigId;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_GetConfigId.

configId Unique identification of the call, which can be used in the

call-handling commands.

Related messages:

MESSAGETYPE_OIP_GetConfigId

5.9 MESSAGETYPE_OIP_ResponseUnits

Purpose:

Responses to the command message MESSAGETYPE_OIP_GetXXXUnits.

Parameter structure:
struct {

 RESPONSEHEADER header;

 STRING units;

} OIP_ResponseUnits;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_ResponseUnits

units Comma (,) separated list of unit names with host name,

Formatted as name(host name).

Related messages:

MESSAGETYPE_OIP_GetConfiguredUnits

MESSAGETYPE_OIP_GetConnectedUnits

68 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

6. NOTIFICATION MESSAGES

6.1 Introduction

The PRAESENSA system notifies you system about the changes of the states of various

resources (e.g. calls, zones). Each notification message starts with a fixed number of

fields, which are presented below in structure format.

struct {

 DWORD messageType;

 UINT length;

 UINT reserved1;

 UINT reserved2;

} NOTIFYHEADER;

Where:

messageType The notification message type as documented in the

sections below.

length The total length of the notification structure.

reserved1 Session sequence number. Currently the reserved1 is not

used and should be set to the value zero (0)

reserved2 Message sequence number. Currently the reserved2 is

not used and should be set to the value zero (0).

NOTE:

The initial two elements described in section 3.4.1, are repeated in this structure.

6.2 MESSAGETYPE_OIP_NotifyCall

Purpose:

Sent when the state of a running call, started by this Open Interface connection

changes. Note that this notification does not report state changes for calls started on

Call-Stations or other Open Interface connections.

Parameter structure:
struct {

 NOTIFYHEADER header;

 UINT callId;

 TOICallState callState;

} OIP_NotifyCall;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyCall.

callId Unique identification of the call, which changed its state.

callState The new state of the call. See §9.2.6 for the definitions of

the call states.

Related messages:

MESSAGETYPE_OIP_StartCreatedCall

MESSAGETYPE_OIP_StopCall

MESSAGETYPE_OIP_AbortCall

69 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

6.3 MESSAGETYPE_OIP_NotifyAlarm

Purpose:

Sent when the state of an alarm changes and there is a subscription to the specific

type of alarm.

Parameter structure:
struct {

 NOTIFYHEADER header;

 TOIAlarmType alarmType;

 TOIAlarmState alarmState;

} OIP_NotifyAlarm;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyAlarm.

alarmType The type of alarm, which changed its state. See §9.2.3 for

the different types.

alarmState The new state of the alarm. See §9.2.4 for the definitions

of the alarm states.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionAlarm

6.4 MESSAGETYPE_OIP_NotifyResources

Purpose:

Sent when the state of resources (zone groups, zones) change and there is a

subscription to notifications of resources.

Parameter structure:
struct {

 NOTIFYHEADER header;

 TOIResourceState resourceState;

 UINT priority;

 UINT callId;

 STRING resources;

} OIP_NotifyResources;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyResources.

resourceState The new state of the resource. See §9.2.5 for the

definitions of the resource states.

priority The priority of the call using the resource when the state is

OIRS_INUSE. Not used (no valid) when the resource

become free (state OIRS_FREE).

callId Identification of the call, which uses the resource. The

value is OI_UNDEFINED_CALLID when the resource is

freed.

70 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

resources List of names of zone groups and/or zones. A comma

separates each name in the routing list.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionResources

6.5 MESSAGETYPE_OIP_NotifyResourceFaultState

Purpose:

Sent when the fault state of resources (zone groups, zones) for faults that affect the

audio distribution of that zone or zone group changes and there is a subscription to

fault notifications of resources.

Parameter structure:
struct {

 NOTIFYHEADER header;

 TOIResourceFaultState resourceFaultState;

 STRING resources;

} OIP_NotifyResourceFaultState;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_NotifyResourceFaultState.

resourceFaultState The new state of the resource. See §9.2.6 for the

definitions of the resource fault states.

resources List of names of zone groups and/or zones. A comma

separates each name in the routing list.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionResourceFaultState

6.6 MESSAGETYPE_OIP_NotifyBgmRouting

Purpose:

Sent when the routing of a BGM channel changes and there is subscription to

notifications of BGM channels.

Parameter structure:
struct {

 NOTIFYHEADER header;

 BOOL addition;

 STRING channel;

 STRING routing;

} OIP_ NotifyBgmRouting;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyBgmRouting.

71 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

addition Whether the routing was added (TRUE) or removed

(FALSE).

channel The name of the BGM channel, which routing was

changed.

routing List of names of zone groups and/or zones and/or control

outputs that were added or removed. A comma separates

each name in the routing list.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionBgmRouting

MESSAGETYPE_OIP_SetBgmRouting

MESSAGETYPE_OIP_AddBgmRouting

MESSAGETYPE_OIP_RemoveBgmRouting

6.7 MESSAGETYPE_OIP_NotifyEvent

Purpose:

Sent when a diagnostic event is added or updated and there is a subscription to

notification of diagnostic events.

Parameter structure:
struct {

 NOTIFYHEADER header;

 TOIActionType action;

 DIAGEVENT diagnosticEvent;

} OIP_NotifyDiagEvent;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyDiagEvent.

action Indicates what happened with the diagnostic event. See

§9.2.8 for the action definitions.

diagnosticEvent Diagnostic event information. See chapter 7 for the

descriptions of the diagnostic information.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionEvents

6.8 MESSAGETYPE_OIP_NotifyBgmVolume

Purpose:

Sent when the volume of a BGM zone changes and there is subscription to

notifications of BGM zones.

Parameter structure:
struct {

 NOTIFYHEADER header;

 STRING zone;

 INT volume;

} OIP_ NotifyBgmVolume;

72 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyBgmRouting.

zone The name of the BGM zone, which volume was changed.

volume The new volume of the zone.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionBgmVolume

MESSAGETYPE_OIP_IncrementBgmVolume

MESSAGETYPE_OIP_DecrementBgmVolume

MESSAGETYPE_OIP_SetBgmVolume

6.9 MESSAGETYPE_OIP_NotifyUnitCount

Purpose:

Sent when the number of connected units has changed.

Parameter structure:
struct {

 NOTIFYHEADER header;

 UINT numberConnected;

} OIP_ NotifyUnitCount;

Where:

header Header of the message, where the messageType element

is equal to MESSAGETYPE_OIP_NotifyUnitCount.

numberConnected The number of connected units.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionUnitCount

6.10 MESSAGETYPE_OIP_NotifyVirtualControlInputState

Purpose:

Sent when the state of one or more virtual control inputs has changed state.

Parameter structure:
struct {

 NOTIFYHEADER header;

 STRING virtualControlInputs;

 TOIVirtualControlInputState state;

} OIP_ NotifyVirtualControlInputState;

Where:

header Header of the message, where the messageType element

is equal to

MESSAGETYPE_OIP_NotifyVirtualControlInputState.

virtualControlInputs List of names of virtual control inputs of which the state has

changed. A comma separates each name in the list.

73 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

state The state of the virtual control inputs. See §9.2.16 for the

definitions of the states.

Related messages:

MESSAGETYPE_OIP_SetSubscriptionVirtualControlInputs

MESSAGETYPE_OIP_activateVirtualControlInput

MESSAGETYPE_OIP_deactivateVirtualControlInput

74 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7. DIAGNOSTIC EVENTS STRUCTURES

7.1 Introduction

The PRAESENSA system uses diagnostic event for reporting signals and faults that are

detected within the system. The diagnostic events can be divided into three groups:

• General Events

Events to signal user action or system changes. All generic events are without

state, which means that they just notify the event.

• Call Events

Signals the activity of calls. Call events are like general events, but they

specifically report about calls.

• Fault Events

Signals problems detected within the PRAESENSA system. Faults have states

for the user and the equipment, reporting the fault event. Fault events influences

the systems fault mode, reported by the message

MESSAGETYPE_OIP_NotifyAlarm.

The diagnostic events are embedded in the MESSAGETYPE_OIP_NotifyEvent

message, but since the event is variable in length, follows the complex structure rule as

described in §3.4.3.2.

Each diagnostic event structure contains a fixed number of fields, which are described

below.

struct {

 TDiagEventType diagMessageType;

 UINT length;

 TDiagEventGroup diagEventGroup;

 TOIEventId diagEventId;

 TDiagEventState diagEventState;

 TIME addTimeStamp;

 TIME acknowledgeTimeStamp;

 TIME resolveTimeStamp;

 TIME resetTimeStamp;

 ORIGINATOR addEventOriginator;

 ORIGINATOR acknowledgeEventOriginator;

 ORIGINATOR resolveEventOriginator;

 ORIGINATOR resetEventOriginator;

} DIAGEVENTHEADER;

Where:

diagMessageType The message type indicator for the diagnostic

structure as defined in 9.4. In the sections below

the various diagnostic event types are described.

length The total length of the diagnostic event information

(including the diagMessageType , length and the

additional information as described for a specific

diagnostic event type)

diagEventGroup The group to which the event belongs. See §9.3.2

for the diagnostic group definitions.

75 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

diagEventId The identification of the event as generated by the

PRAESENSA system.

diagEventState The state of the event.

addTimeStamp Time of creation (add to the system) of the

diagnostic event.

acknowledgeTimeStamp Time of acknowledgement by a user of the

diagnostic event. On creation filled with value zero.

resolveTimeStamp Time of resolving the problem by the event-creator

of the diagnostic event. On creation filled with

value zero.

resetTimeStamp Time of reset by a user of the diagnostic event. On

creation filled with value zero.

addEventOriginator The originator that created (add to the system) the

event.

acknowledgeEventOriginat

or

The originator that acknowledged the event, filled

when acknowledged. On creation filled with value

structure OIEOT_NoEventOriginator.

resolveEventOriginator The originator that resolved the event, filled when

resolved. On creation filled with value structure

OIEOT_NoEventOriginator.

resetEventOriginator The originator that reset the event, filled when

reset. On creation filled with value structure

OIEOT_NoEventOriginator.

Note: the event originator information is described in §7.4.13.

7.2 General Diagnostic Events

This section describes the general diagnostic event types. For each diagnostic event is

either the structure defined, or a reference to the structure definition.

Since a general diagnostic event is stateless, several elements in the

DIAGEVENTHEADER structure have default values:

• The diagEventState is always set to the value DES_NEW (See §9.3.1)

• The time stamps for Acknowledge, Resolve and Reset are set to no time (value

0).

• The originators for Acknowledge, Resolve and Reset are set to the type

OIEOT_NoEventOriginator

76 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.2.1 DET_EvacAcknowledge

Purpose:

This diagnostic event indicates that the system emergency state is acknowledged.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_EvacAcknowledge.

7.2.2 DET_EvacReset

Purpose:

This diagnostic event indicates that the system emergency state is reset.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_EvacReset.

7.2.3 DET_EvacSet

Purpose:

This diagnostic event indicates that the system emergency state is set (activated).

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_EvacSet.

7.2.4 DET_UnitConnect

Purpose:

This diagnostic event indicates that a unit has connected to or disconnected from the

PRAESENSA system.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_UnitConnect.

7.2.5 DET_SCStartup

Purpose:

This diagnostic event indicates that the PRAESENSA system has started.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_SCStartup.

7.2.6 DET_OpenInterfaceConnect

Purpose:

This diagnostic event indicates that a remote system has connected to the

PRAESENSA system using the open interface.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_OpenInterfaceConnect.

77 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.2.7 DET_OpenInterfaceDisconnect

Purpose:

This diagnostic event indicates that a remote system has disconnected from the

PRAESENSA system using the open interface.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_OpenInterfaceDisconnect.

7.2.8 DET_OpenInterfaceConnectFailed

Purpose:

This diagnostic event indicates that a remote system has attempted to connect to the

PRAESENSA system using the open interface but failed.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_OpenInterfaceConnectFailed.

7.2.9 DET_CallLoggingSuspended

Purpose:

This diagnostic event indicates that call logging has been suspended because of a

logging queue overflow.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_CallLoggingSuspended.

7.2.10 DET_CallLoggingResumed

Purpose:

This diagnostic event indicates that call logging has been resumed.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_CallLoggingResumed.

7.2.11 DET_UserLogIn

Purpose:

This diagnostic event Indicates that a user has logged in.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_UserLogIn.

7.2.12 DET_UserLogOut

Purpose:

This diagnostic event indicates that a user has logged out.

78 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_UserLogOut.

7.2.13 DET_UserLogInFailed

Purpose:

This diagnostic event indicates that a login attempt has failed.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_UserLogInFailed.

7.2.14 DET_BackupPowerModeStart

Purpose:

This diagnostic event indicates that backup power mode has started.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BackupPowerModeStart. This event is only generated when backup power

mode (in the system settings) has been configured not to generate a fault event.

7.2.15 DET_BackupPowerModeEnd

Purpose:

This diagnostic event indicates that backup power mode has ended.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BackupPowerModeEnd. This event is only generated when backup power

mode (in the system settings) has been configured not to generate a fault event.

7.2.16 DET_ConfigurationRestored

Purpose:

This diagnostic event Indicates that the configuration on the system controller has

been restored from a backup.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 BOOLEAN configurationRestored;

 BOOLEAN securityConfigurationRestored;

 BOOLEAN messagesRestored;

} ConfigurationRestoredDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_BoosterSpareSwitch.

configurationRestored Whether the configuration is restored.

79 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

securityConfigurationR

estored

Whether the security configuration is restored.

messagesRestored Whether the messages are restored.

7.2.17 DET_DemoteToBackup

Purpose:

This diagnostic event indicates that the current duty controller in a redundant system

detected a critical fault and demoted itself to backup.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DemoteToBackup.

7.2.18 DET_InControl

Purpose:

This diagnostic event indicates that a call station in a group is now in control.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING callStationGroupName;

} InControlDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_InControl.

7.3 Call Diagnostic Events

This section describes the call diagnostic event types. For each diagnostic event either

the structure is defined, or a reference to the structure definition.

Since a call diagnostic event is stateless, the same default values are used as described

in §7.2.

7.3.1 DET_CallStartDiagEventV2

Purpose:

This diagnostic event indicates the start of a call in the PRAESENSA system.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT callId;

 STRING audioInput;

 STRING endChime;

 BOOLEAN liveSpeech;

 STRING messageNames;

 STRING outputNames;

 UINT priority;

 STRING startChime;

80 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 UINT messageRepeat;

 STRING macroName;

 UINT originalCallId;

 TOICallOutputHandling outputHandling;

 TOICallTiming callTiming;

 UINT reserved;

} CallStartDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_CallStartDiagEventV2.

audioInput The names of the audio input used in this call.

endChime The names of the end chimes used in this call.

liveSpeech Whether or not this call has live speech.

messageNames List of names of prerecorded messages used in this

call. A comma separates each name in the list.

outputNames List of names of zones used in the call. A comma

separates each name in the routing list.

Priority The priority of the call. See §4.5 for the value

description of the priority.

startChime The names of the start chimes used in this call.

messageRepeat The repeat count of the messages in the call. See §4.5

for the value description of the repeat count.

callId Identification of the call.

macroName The name of the macro used in this call.

originalCallId Identification of the original call in case of a replay.

outputHandling Whether the call is ‘partial’ or ‘stacked’. Partial calls are

calls that proceed even in case not all required zones

are available. Stacked calls are calls that extend partial

calls with replays to previously unavailable zones.

callTiming Whether the call should start ‘immediate’, ‘time-shifted’

or ‘pre-monitored’.

reserved Parameter only used for internal processing.

7.3.2 DET_CallEndDiagEventV2

Purpose:

This diagnostic event indicates the end (or abort) of a call in the PRAESENSA

system.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_CallStartDiagEventV2.

81 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT callId;

 TOICallState callStateCompleted;

 BOOLEAN callAborted;

 TOICallStopReason callStopReason;

 UINT reserved;

} CallEndDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to

DET_CallChangeResourceDiagEventV2.

callId Identification of the call.

callStateCompleted The last completed call state the moment the call is

stopped or aborted. See §9.2.7for the definitions of

the call states.

callAborted Whether a call was aborted. TRUE = call is aborted,

FALSE = the call is stopped.

callStopReason Why the call was stopped or aborted. See §9.2.8 for

the definitions of the call stop reasons.

reserved Parameter only used for internal processing.

7.3.3 DET_CallChangeResourceDiagEventV2

Purpose:

This diagnostic event indicates a change in routing of a running call. The diagnostic

event indicates whether zone groups, zones and/or control outputs are added to the

routing or removed from the routing.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT callId;

 STRING removedResourceNames;

 STRING addedResourceNames;

} CallChangeResourceDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to

DET_CallChangeResourceDiagEvent.

callId Identification of the call.

removedResourceNames List of names of zones removed from the call. A

comma separates each name.

addedResourceNames List of names of zones added to the call. A comma

separates each name.

82 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.3.4 DET_CallTimeoutDiagEventV2

Purpose:

This diagnostic event indicates that a stacked call has reached its time-out point and

implies that the call has been unable to reach all required zones. The diagnostic

event provides the unreached zones.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT callId;

 STRING unreachedResourceNames;

} CallTimeoutDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_CallTimeoutDiagEvent.

callId Identification of the call.

unreachedResourcesNam

es

List of names of zones that were not reached during

the extended call. A comma separates each name.

7.3.5 DET_CallRestartDiagEvent

Purpose:

This diagnostic event indicates the restart of a call in the PRAESENSA system. The

diagnostic event is only logged when the call was reset earlier (see §7.3.6).

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT callId;

 STRING audioInput;

 STRING endChime;

 BOOLEAN liveSpeech;

 STRING messageNames;

 STRING outputNames;

 UINT priority;

 STRING startChime;

 UINT messageRepeat;

 STRING macroName;

 UINT originalCallId;

 TOICallOutputHandling outputHandling;

 TOICallTiming callTiming;

 UINT reserved;

} CallRestartDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_CallRestartDiagEvent.

audioInput The names of the audio input used in this call.

endChime The names of the end chimes used in this call.

liveSpeech Whether or not this call has live speech.

messageNames List of names of prerecorded messages used in this

call. A comma separates each name in the list.

83 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

outputNames List of names of zones used in the call. A comma

separates each name in the routing list.

Priority The priority of the call. See §4.5 for the value

description of the priority.

startChime The names of the start chimes used in this call.

messageRepeat The repeat count of the messages in the call. See §4.5

for the value description of the repeat count.

callId Identification of the call.

macroName The name of the macro used in this call.

originalCallId Identification of the original call in case of a replay.

outputHandling Whether the call is ‘partial’, or ‘stacked’. Partial calls are

calls that proceed even in case not all required zones

are available. Stacked calls are calls that extend partial

calls with replays to previously unavailable zones.

callTiming Whether the call should start ‘immediate’, ‘time-shifted’

or ‘pre-monitored’.

reserved Parameter only used for internal processing.

7.3.6 DET_CallResetDiagEvent

Purpose:

This diagnostic event indicates the reset of a call in the PRAESENSA system. A call

can only be reset (and restarted) if the ‘Continue call’ setting in the Call Macro is set

to ‘After interruption’. If a call is reset, the call state is set to OICS_IDLE (see §9.2.7)

and the call will be restarted.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_CallResetDiagEvent.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT callId;

 TOICallState callStateCompleted;

 TOICallResetReason callResetReason;

 UINT reserved;

} CallResetDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_CallResetDiagEvent.

callId Identification of the call.

callStateCompleted The active call state the moment the call is reset. See

§9.2.7 for the definitions of the call states.

84 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

callResetReason Why the call was reset. See §Error! Reference s

ource not found.9.2.8 for the definitions of the call

reset reason.

reserved Parameter only used for internal processing.

7.4 Fault Diagnostic Events

This section describes the fault diagnostic event types. For each diagnostic event either

the structure is defined, or a reference to the structure definition.

The creation of a fault within a fault-less system changes the system to the fault mode.

This indicates that the PRAESENSA system requires maintenance. The maintenance

engineer acknowledges the faults and takes appropriate action to repair the faults. When

the system detects that the faults are resolved, the fault-diagnostic events resolve their

fault. Finally, the maintenance engineer should reset the fault to bring the system in

normal operation mode.

Each fault diagnostic event passes several states, which are all notified. The link

between related faults is controlled by the diagEventId element in the header of the

diagnostic event (see structure in section 7).

7.4.1 DET_AudioPathSupervision

Purpose:

This diagnostic event indicates that an audio-path failure is detected.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AudioPathSupervision.

7.4.2 DET_MicrophoneSupervision

Purpose:

This diagnostic event indicates that a microphone failure is detected. Note that this

diagnostic event only applies to a Call Station.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_MicrophoneSupervision

7.4.3 DET_ControlInputLineFault

Purpose:

This diagnostic event indicates that a control input line failure is detected.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_ControlInputLineFault.

85 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.4 DET_CallStationExtension

Purpose:

This diagnostic event indicates that a mismatch between the number of configured

call station extensions and the number of detected call station extensions

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT numberConfigured;

 UINT numberDetected;

} CallStationExtensionDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_CallStationExtension.

numberConfigured The number of extensions as configured in the

PRAESENSA system configuration

numberDetected The number of extensions as reported by the call

station.

7.4.5 DET_ConfigurationFile

Purpose:

This diagnostic event indicates that a missing or corrupt configuration file is

detected.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_ConfigurationFile.

7.4.6 DET_ConfigurationVersion

Purpose:

This diagnostic event indicates that a mismatch between the configuration file

version and the required configuration file version is detected. The configuration file

requires conversion.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING expected;

 STRING loaded;

} ConfigurationVersionDiagEvent;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_ConfigurationVersion.

expected String containing the expected configuration file

version

Loaded String containing the loaded (opened) configuration file

version

86 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.7 DET_IllegalConfiguration

Purpose:

This diagnostic event indicates an inconsistency within the active configuration file.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT errorCode;

} IllegalConfigurationDiagEvent;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_IllegalConfiguration.

errorCode The code of the illegal configuration error. Not used at

the moment, currently filled with the value ‘0’.

7.4.8 DET_PrerecordedMessagesNames

Purpose:

This diagnostic event indicates that a mismatch is detected between the configured

(and used) prerecorded message-names and the detected prerecorded message-

names in the PRAESENSA system.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING missingMessages;

} PrerecordedMessagesNamesDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to

DET_PrerecordedMessagesNames.

missingMessages List of names of prerecorded messages not found in

the PRAESENSA system, but used in the

configuration. A comma separates each name in the

list.

7.4.9 DET_PrerecordedMessagesCorrupt

Purpose:

This diagnostic event indicates that one or more prerecorded messages in the

PRAESENSA system is corrupt and cannot be used.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING corruptMessages;

} PrerecordedMessagesCorruptDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to

DET_PrerecordedMessagesCorrupt.

87 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

corruptMessages List of names of corrupt prerecorded messages in the

PRAESENSA system. A comma separates each name

in the list.

7.4.10 DET_UnitMissing

Purpose:

This diagnostic event indicates a missing unit, which was configured in the

PRAESENSA system configuration.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_UnitMissing.

7.4.11 DET_UnitReset

Purpose:

This diagnostic event indicates that a restart of a unit is detected.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING chipType;

} UnitResetDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_UnitReset.

chipType The type of the processor that caused is restarted.

7.4.12 DET_UserInjectedFault

Purpose:

This diagnostic event indicates that a fault is injected by a user or a remote system.

Note that this diagnostic event message can be triggered by the

MESSAGETYPE_OIP_ReportFault as well as by a configured control-input of the

PRAESENSA system.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING errorDescription;

} UserInjectedFaultDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_UserInjectedFault.

errorDescription A textual description of the error.

Related messages:

MESSAGETYPE_OIP_ReportFault

88 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.13 DET_NoFaults

Purpose:

A diagnostic event of this type does not represent an actual fault, but is used to

indicate that there are no fault events present in the logging of the system controller.

This event is always sent in a message with the TOIActionType equal to

OIACT_EXISTING_LAST (See §9.2.9).

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_NoFaults

and the diagEventId is equal to zero.

7.4.14 DET_ZoneLineFault

Purpose:

This diagnostic event indicates that a Zone Line Fault that is injected by a remote

system by triggering configured control input.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT[] zoneResourceIds;

 UINT keySpecResourceId;

 STRING zoneNames;

 STRING controlInputName;

} ZoneLineFaultDiagEvent;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_ZoneLineFault.

zoneResourceIds

keySpecResourceId

zoneNames

Array of internal IDs indicating which zones have a

zone line fault. Can be ignored.

Internal ID indicating which key specification that

triggered the zone line fault. Can be ignored.

Zone names which are configured to the input contact

that are reported. A comma separates each name.

controlInputName Control input name which is configured for the zone

line fault.

7.4.15 DET_NetworkChangeDiagEvent

Purpose:

This diagnostic event indicates that there was a change in the network (broken links

between devices). This event is only reported if network supervision is enabled (see

[UG_PRAESENSA]).

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 BYTE nrNetworkChanges;

 TNetworkChangeData networkChanges[];

} NetworkChangeDiagEvent;

Where TNetworkChangeData is defined as:

89 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

struct {

 STRING localPortId;

 STRING localSystemName;

 STRING remotePortId;

 STRING remoteSystemName;

} TNetworkChangeData

Where:

header Header of the event, where the diagMessageType

element is equal to DET_NetworkChangeDiagEvent.

nrNetworkChanges

The number of changes present in the network

changes array element. Only this amount of array

elements is transmitted.

networkChanges [] Array holding the network changes information. The

actual length of the array is defined in the

nrNetworkChanges element. The structure of each

array element is described below.

localPortId The port ID of the local system.

localSystemName

remotePortId

remoteSystemNam

e

The name of the local system as configured in

the PRAESENSA system.

The port ID of the remote system.

The name of the remote system as configured in

the PRAESENSA system.

7.4.16 DET_IncompatibleFirmware

Purpose:

This diagnostic event indicates that a device contains incompatible firmware and

cannot be used in the PRAESENSA system.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING current;

 STRING expected;

} OverheatFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_IncompatibleFirmware.

current

expected

The current firmware in the device.

The expected firmware the device should contain.

7.4.17 DET_Amp48VAFault

Purpose:

This diagnostic event indicates the loss of 48V A supply for the amplifier. Severity is

high if DET_Amp48VBFault is also reported.

90 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} Amp48VAFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_Amp48VAFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

Related events:

DET_Amp48VBFault

7.4.18 DET_Amp48VBFault

Purpose:

This diagnostic event indicates the loss 48V B supply. Severity is high if

DET_Amp48VAFault is also reported.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} Amp48VAFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_Amp48VBFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

Related events:

DET_Amp48VAFault

7.4.19 DET_AmpChannelFault

Purpose:

This diagnostic event indicates a channel fault internally in the amplifier. If not used

already, the spare channel takes over the functionality of the channel. Severity is

high if the spare channel is already in use.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} Amp48VAFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_AmpChannelFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

91 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.20 DET_AmpShortCircuitLineAFault

Purpose:

This diagnostic event indicates for the amplifier channel the hardware short detection

is triggered or the output voltage is too low due to a short on line A.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} AmpShortCircuitLineAFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_AmpShortCircuitLineAFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.21 DET_AmpShortCircuitLineBFault

Purpose:

This diagnostic event indicates for the amplifier channel the hardware short detection

is triggered or the output voltage is too low due to a short on line B.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} AmpShortCircuitLineBFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_AmpShortCircuitLineBFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.22 DET_AmpAcc18VFault

Purpose:

This diagnostic event indicates failure of the amplifier lifeline power supply. The

severity is not used.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} AmpAcc18VFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_AmpAcc18VFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

92 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.23 DET_AmpSpareInternalFault

Purpose:

This diagnostic event indicates an internal failure in the amplifier spare channel and

can no longer be used. Severity is always high.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} AmpSpareInternalFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_AmpSpareInternalFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.24 DET_AmpChannelOverloadFault

Purpose:

This diagnostic event indicates for the amplifier channel an output overload has

occurred.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} AmpChannelOverloadFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_AmpChannelOverloadFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.25 DET_EolFailureLineAFault

Purpose:

This diagnostic event indicates that the end-of-line device for the amplifier channel

on line A is disconnected (the end-of-line pilot tone is not present).

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} EolFailureLineAFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_EolFailureLineAFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.26 DET_EolFailureLineBFault

Purpose:

This diagnostic event indicates that the end-of-line device for the amplifier channel

on line B is disconnected (the end-of-line pilot tone is not present).

93 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} EolFailureLineBFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_EolFailureLineBFault.

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.27 DET_GroundShortFault

Purpose:

This diagnostic event indicates that a ground fault is signaled by the amplifier

hardware.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_GroundShortFault.

7.4.28 DET_OverheatFault

Purpose:

This diagnostic event indicates that amplifier hardware is overheated. All channels

are disabled and severity is always high.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} OverheatFault;

Where:

header Header of the event, where the diagMessageType

element is equal to DET_OverheatFault

severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.29 DET_PowerMainsSupplyFault

Purpose:

This diagnostic event indicates the loss of mains power for a Multifunction Power

Supply

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_PowerMainsSupplyFault.

7.4.30 DET_PowerBackupSupplyFault

Purpose:

This diagnostic event indicates the loss of backup power supply for a Multifunction

Power Supply

94 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_PowerBackupSupplyFault.

7.4.31 DET_MainsAbsentPSU1Fault

Purpose:

This diagnostic event indicates absence of the output 1 mains power. The number

matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_MainsAbsentPSU1Fault.

7.4.32 DET_MainsAbsentPSU2Fault

Purpose:

This diagnostic event indicates absence of the output 2 mains power. The number

matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_MainsAbsentPSU2Fault.

7.4.33 DET_MainsAbsentPSU3Fault

Purpose:

This diagnostic event indicates absence of the output 3 mains power. The number

matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_MainsAbsentPSU3Fault.

7.4.34 DET_BackupAbsentPSU1Fault

Purpose:

This diagnostic event indicates absence of the output 1 12V DC backup power. The

number matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BackupAbsentPSU1Fault.

7.4.35 DET_BackupAbsentPSU2Fault

Purpose:

This diagnostic event indicates absence of the output 2 12V DC backup power. The

number matches the screening at the back-panel of the device.

95 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BackupAbsentPSU2Fault.

7.4.36 DET_BackupAbsentPSU3Fault

Purpose:

This diagnostic event indicates absence of the output 3 12V DC backup power. The

number matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BackupAbsentPSU3Fault.

7.4.37 DET_DcOut1PSU1Fault

Purpose:

This diagnostic event indicates a missing 48V DC output for output 1A. The numbers

match the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcOut1PSU1Fault.

7.4.38 DET_DcOut2PSU1Fault

Purpose:

This diagnostic event indicates a missing 48V DC output for output 1B. The numbers

match the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcOut2PSU1Fault.

7.4.39 DET_DcOut1PSU2Fault

Purpose:

This diagnostic event indicates a missing 48V DC output for output 2A. The numbers

match the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcOut1PSU2Fault.

7.4.40 DET_DcOut2PSU2Fault

Purpose:

This diagnostic event indicates a missing 48V DC output for output 2B. The numbers

match the screening at the back-panel of the device.

96 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcOut2PSU2Fault.

7.4.41 DET_DcOut1PSU3Fault

Purpose:

This diagnostic event indicates a missing 48V DC output for output 3A. The numbers

match the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcOut1PSU3Fault.

7.4.42 DET_DcOut2PSU3Fault

Purpose:

This diagnostic event indicates a missing 48V DC output for output 3B. The numbers

match the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcOut2PSU3Fault.

7.4.43 DET_AudioLifelinePSU1Fault

Purpose:

This diagnostic event indicates a wiring problem in the ACC connector with the

lifeline analog audio signal for output 1. The number matches the screening at the

back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AudioLifelinePSU1Fault.

7.4.44 DET_AudioLifelinePSU2Fault

Purpose:

This diagnostic event indicates a wiring problem in the ACC connector with the

lifeline analog audio signal for output 2. The number matches the screening at the

back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AudioLifelinePSU2Fault.

97 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.45 DET_AudioLifelinePSU3Fault

Purpose:

This diagnostic event indicates a wiring problem in the ACC connector with the

lifeline analog audio signal for output 3. The number matches the screening at the

back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AudioLifelinePSU3Fault.

7.4.46 DET_AccSupplyPSU1Fault

Purpose:

This diagnostic event indicates a missing 10 to 18V at the ACC connector for output

1. The number matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AccSupplyPSU1Fault.

7.4.47 DET_AccSupplyPSU2Fault

Purpose:

This diagnostic event indicates a missing 10 to 18V at the ACC connector for output

2. The number matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AccSupplyPSU2Fault.

7.4.48 DET_AccSupplyPSU3Fault

Purpose:

This diagnostic event indicates a missing 10 to 18V at the ACC connector for output

3. The number matches the screening at the back-panel of the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_AccSupplyPSU3Fault.

7.4.49 DET_Fan1Fault

Purpose:

This diagnostic event indicates that fan 1 in the Multifunction Power Supply is

broken.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_Fan1Fault.

98 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.50 DET_Fan2Fault

Purpose:

This diagnostic event indicates that fan 2 in the Multifunction Power Supply is

broken.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_Fan2Fault.

7.4.51 DET_DcAux1Fault

Purpose:

This diagnostic event indicates the absence of 24V DC aux 1 voltage for the

Multifunction Power Supply. The number matches the screening at the back-panel of

the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcAux1Fault.

7.4.52 DET_DcAux2Fault

Purpose:

This diagnostic event indicates the absence of 24V DC aux 2 voltage for the

Multifunction Power Supply. The number matches the screening at the back-panel of

the device.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_DcAux2Fault.

7.4.53 DET_BatteryShortFault

Purpose:

This diagnostic event indicates a short in the external battery for the Multifunction

Power Supply.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BatteryShortFault.

7.4.54 DET_BatteryRiFault

Purpose:

This diagnostic event indicates a Ri fault for the connected battery of the

Multifunction Power Supply. Depending on the configured battery capacity in the

PRAESENSA system a fault is reported.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BatteryRiFault.

99 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.55 DET_BatteryOverheatFault

Purpose:

This diagnostic event indicates the temperature of the connected battery of the

Multifunction Power Supply is not in correct working range

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BatteryOverheatFault.

7.4.56 DET_BatteryFloatChargeFault

Purpose:

This diagnostic event indicates that the battery of the Multifunction Power Supply is

most likely broken. The charger enters a float state when the State of Charge (SoC)

is 100%. In this state a low charge current is expected just to component the self-

discharge of the battery. When the charge current is very high the battery is probably

broken and therefore the fault is reported. The charger is suspended for safety

reasons.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BatteryFloatChargeFault.

7.4.57 DET_MainsAbsentChargerFault

Purpose:

This diagnostic event indicates that the mains converter for the charger is defect

which prevents charging the battery correctly.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_MainsAbsentChargerFault.

7.4.58 DET_PoESupplyFault

Purpose:

This diagnostic event indicates that a mismatch is detected the number of Power

over Ethernet connections to the call station and the number of expected Power over

Ethernet inputs configured in the PRAESENSA system.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_PoESupplyFault.

7.4.59 DET_PowerSupplyAFault

Purpose:

This diagnostic event indicates that the power supply input A level on the system

controller is not within range. The fault is only reported if the power supply input is

configured to be supervised in the PRAESENSA system.

100 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_PowerSupplyAFault.

7.4.60 DET_PowerSupplyBFault

Purpose:

This diagnostic event indicates that the power supply input B level on the system

controller is not within range. The fault is only reported if the power supply input is

configured to be supervised in the PRAESENSA system.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_PowerSupplyBFault.

7.4.61 DET_ExternalPowerFault

Purpose:

This diagnostic event indicates that the PRAESENSA system is now in backup

power mode. This event is only generated when backup power mode (in the system

settings) has been configured to generate a fault event.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_ExternalPowerFault.

7.4.62 DET_ChargerSupplyVoltageTooLowFault

Purpose:

This diagnostic event indicates that the charger supply voltage is too low which

prevents charging the battery correctly.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_ChargerSupplyVoltageTooLowFault.

7.4.63 DET_BatteryOvervoltageFault

Purpose:

This diagnostic event indicates that the internal charger is defect and is switched off

for safety reasons.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BatteryOvervoltageFault.

7.4.64 DET_BatteryUndervoltageFault

Purpose:

This diagnostic event indicates that there is an undervoltage situation when mains is

absent. The battery is too empty to operate on.

101 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_BatteryUndervoltageFault.

7.4.65 DET_MediaClockFault

Purpose:

This diagnostic event indicates there are one or more devices that failed to lock to

PTP for a longer period of time.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_MediaClockFault.

7.4.66 DET_ChargerFault

Purpose:

This diagnostics event indicates an internal charger fault which prevents charging

the battery correctly.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_ChargerFault.

7.4.67 DET_Amp20VFault

Purpose:

This diagnostic event indicates the failure of the power convertor for the controller

section of the amplifier.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} Amp20VFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_Amp20VFault.

Severity Severity of the fault. LOW = 0, HIGH = 1.

Related events:

DET_AmpPsuFault

7.4.68 DET_AmpPsuFault

Purpose:

This diagnostic event indicates the failure of the power convertor for the audio

section of the amplifier.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

102 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 UINT severity;

} AmpPsuFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_AmpPsuFault.

Severity Severity of the fault. LOW = 0, HIGH = 1.

Related events:

DET_Amp20VFault

7.4.69 DET_NetworkLatencyFault

Purpose:

This diagnostic event indicates that an audio flow gets interrupted by network delay

and network jitter.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} NetworkLatencyFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_NetworkLatencyFault.

Severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.70 DET_SynchronizationFault

Purpose:

This diagnostic event indicates that the synchronization between a standby controller

and a duty controller in a redundant system failed..

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_SynchronzationFault.

7.4.71 DET_AudioDelayFault

Purpose:

This diagnostic event indicates that DDR audio path issues occurred on the

amplifier.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} AudioDelayFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_AudioDelayFault.

103 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.72 DET_InternalPowerFault

Purpose:

This diagnostic event indicates that one of the voltages on the powerlines in the

MPS are out of bound.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_InternalPowerFault.

7.4.73 DET_InternalCommunicationFault

Purpose:

This diagnostic event indicates that one or several boards in the MPS are not

responding.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING board;

} InternalCommunicationFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_InternalCommunicationFault.

Board Space separated list of boards which are faulty.

7.4.74 DET_VoIPFault

Purpose:

This diagnostic event indicates that VoIP calls using SIP and the PABX are no

longer

 possible due to configuration- or connectivity issues.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to DET_VoIPFault.

7.4.75 DET_RemoteOutputFault

Purpose:

This diagnostic event indicates a fault on a remote audio output, located on a remote

system device.

104 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 UINT severity;

} RemoteOutputFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_RemoteOutputFault.

Severity Severity of the fault. LOW = 0, HIGH = 1.

7.4.76 DET_RemoteOutputLoopFault

Purpose:

This diagnostic event indicates that a loop is detected for a remote audio output. A

loop is defined as a remote audio output which is linked to a zone group on a system

controller which contains remote audio outputs that are linked back to one or more

zone groups located on the originating system controller.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING remoteZoneGroupName;

} RemoteOutputLoopFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_RemoteOutputLoopFault.

remoteZoneGroupNam

e

Name of the remote zone group

7.4.77 DET_RemoteOutputConfigurationFault

Purpose:

This diagnostic event indicates that an invalid remote zone group name is configured

for the remote audio output.

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 STRING remoteZoneGroupName;

} RemoteOutputConfigurationFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to

DET_RemoteOutputConfigurationFault.

remoteZoneGroupNam

e

Name of the remote zone group

105 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.78 DET_LicenseFault

Purpose:

This diagnostic event indicates that there is insufficient license of a specific license

type

Parameter structure:
struct {

 DIAGEVENTHEADER header;

 License licenseType;

} LicenseFault;

Where:

Header Header of the event, where the diagMessageType

element is equal to DET_LicenseFault.

licenseType Insufficient license type

7.4.79 DET_RemoteSystemFault

Purpose:

This diagnostic event indicates that a system fault is detected on another remote

system controller.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_RemoteSystemFault.

7.4.80 DET_RemoteMainPowerFault

Purpose:

This diagnostic event indicates that a main power fault is detected on another

remote system controller.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_RemoteMainPowerFault.

7.4.81 DET_RemoteBackupPowerFault

Purpose:

his diagnostic event indicates that a backup power fault is detected on another

remote system controller.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_RemoteBackupPowerFault.

106 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

7.4.82 DET_RemoteGroundFault

Purpose:

This diagnostic event indicates that a ground fault is detected on another remote

system controller.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_RemoteGroundFault.

7.4.83 DET_RemoteFault

Purpose:

This diagnostic event indicates that a fault is detected on another remote system

controller.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_RemoteFault.

7.4.84 DET_PowerSupplyFault

Purpose:

This diagnostics event indicates a power supply fault is detected on a unit

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_PowerSupplyFault.

7.4.85 DET_StackedSwitchMismatchFault

Purpose:

This diagnostics event indicates a mismatch between the detected switches in a

stacked switch setup and the configuration

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_StackedSwitchMismatchFault.

7.4.86 DET_RedundantDataPathFault

Purpose:

This diagnostics event indicates that the interconnection between stacked Cisco

IE5000 switches is not redundant.

107 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_RedundantDataPathFault.

7.4.87 DET_ControlOutputLineFault

Purpose:

This diagnostic event indicates that a control output line failure is detected.

Parameter structure:

The Diagnostic Event structure contains only the information as described in the

DIAGEVENTHEADER, wherein the diagMessageType is equal to

DET_ControlOutputLineFault.

108 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

8. EVENT ORIGINATOR STRUCTURES

8.1 Introduction

Each diagnostic event that is sent contains originators to indicate who or which device

has triggered the event. The group of originators described the structures for each kind

of originator.

Each originator structure contains a fixed number of fields, which are described below.

Struct {

 DWORD originatorType;

 UINT length;

} ORIGINATORHEADER;

Where:

originatorType The originator type indicator for the originator structure

as defined §9.5. In the sections below the various

diagnostic event types are described.

length The total length of the originator information (including

the originatorType, Length and the additional

information as described for a specific diagnostic event

type)

8.2 OIEOT_NoEventOriginator

Purpose:

This originator represents no or an unknown originator. There is no information

available about the originator. During the creation of a diagnostic event message,

only the addEventOriginater element is filled with an originator. All other originator

elements of the structure are filled with this originator type.

Parameter structure:

The Originator structure contains only the information as described in the

ORIGINATORHEADER, wherein the originatorType is equal to

OIEOT_NoEventOriginator.

Note that since this originator type does not add additional information, the length

parameter in the ORIGINATORHEADER only holds the length of the

ORIGINATORHEADER.

8.3 OIEOT_UnitEventOriginator

Purpose:

This originator represents a unit connected to the PRAESENSA system.

Parameter structure:
struct {

 ORIGINATORHEADER header;

 STRING unitName;

} UnitOriginator;

Where:

header The originator header, where the originatorType

element is equal to OIEOT_UnitEventOriginator.

109 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

unitName The name of the originator unit as configured in the

PRAESENSA system configuration.

8.4 OIEOT_OpenInterfaceEventOriginator

Purpose:

This originator represents an open interface connection and its connection name.

Parameter structure:
struct {

 ORIGINATORHEADER header;

 STRING tcpIpDeviceName;

 DWORD ipAddress;

 WORD portNumber;

 STRING userName;

} OpenInterfaceOriginator;

Where:

header The originator header, where the originatorType

element is equal to

OIEOT_OpenInterfaceEventOriginator.

tcpIpDeviceName The name of the TCP/IP device. Currently this name is

not (yet) filled (empty string).

ipAddress The IP address of the originator open interface

connection. Note that this IP address is transmitted as

DWORD (LSB ordering) and not as an IP-address. The

ordering of the bytes is different. Only IPv4 is

supported in the PRAESENSA system.

portNumber The TCP-port number of the open interface

connection.

userName The login user name of the open interface connection.

8.5 OIEOT_ControlInputEventOriginator

Purpose:

This originator represents a binary control input, located on a unit.

Parameter structure:
struct {

 UnitOriginator unitHeader;

 STRING inputContactName;

} ControlInputOriginator;

Where:

unitHeader The unit-originator header (See §8.3), where the

originatorType element is equal to

OIEOT_ControlInputEventOriginator.

inputContactName The name of the input contact as configured in the

PRAESENSA system configuration.

110 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

8.6 OIEOT_AudioOutputEventOriginator

Purpose:

This originator represents an audio output, located on a unit.

Parameter structure:
struct {

 UnitOriginator unitHeader;

 STRING audioOutputName;

} AudioOutputEventOriginator;

Where:

unitHeader The unit-originator header (See §8.3), where the

originatorType element is equal to

OIEOT_AudioOutputEventOriginator.

audioOutputName The name of the audio output as configured in the

PRAESENSA system configuration.

8.7 OIEOT_AudioInputEventOriginator

Purpose:

This originator represents an audio input, located on a unit.

Parameter structure:
struct {

 UnitOriginator unitHeader;

 STRING audioInputName;

} AudioInputEventOriginator;

Where:

unitHeader The unit-originator header (See §8.3), where the

originatorType element is equal to

OIEOT_AudioInputEventOriginator.

audioInputName The name of the audio input as configured in the

PRAESENSA system configuration.

8.8 OIEOT_UserEventOriginator

Purpose:

This originator represents user action performed on the system.

Parameter structure:
struct {

 UnitOriginator unitHeader;

 STRING userId;

} UserEventOriginator;

Where:

unitHeader The unit-originator header (See §8.3), where the

originatorType element is equal to

OIEOT_UserEventOriginator.

userId The user ID which is logged in.

111 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

8.9 OIEOT_NetworkEventOriginator

Purpose:

This originator represents network action performed on the system

Parameter structure:
struct {

 UnitOriginator unitHeader;

 DWORD ipAddress;

 WORD portNumber;

 STRING userName;

} NetworkEventOriginator;

Where:

unitHeader

ipAddress

portNumber

The unit-originator header (See §8.3), where the

originatorType element is equal to

OIEOT_NetworkEventOriginator.

The IP address of the network connection. Note that

this IP address is transmitted as DWORD (LSB

ordering) and not as an IP-address. The ordering of the

bytes is different. Only IPv4 is supported in the

PRAESENSA system.

The TCP-port number of the connection

userName The user name of the originator network connection

8.10 OIEOT_StackedUnitEventOriginator

Purpose:

This originator represents a sub-unit of a composite unit connected to the

PRAESENSA system.

Parameter structure:
struct {

 ORIGINATORHEADER header;

 STRING unitName;

 BYTE stackId;

} StackedUnitOriginator;

Where:

header The originator header, where the originatorType

element is equal to OIEOT_UnitEventOriginator.

unitName The name of the originator unit as configured in the

PRAESENSA system configuration.

stackId Id of the sub-unit. Used for stacked Cisco switches

where the stackId can have the value 1 to 4.

112 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

8.11 OIEOT_ControlOutputEventOriginator

Purpose:

This originator represents a binary control output, located on a unit.

Parameter structure:
struct {

 UnitOriginator unitHeader;

 STRING outputContactName;

} ControlInputOriginator;

Where:

unitHeader The unit-originator header (See §8.3), where the

originatorType element is equal to

OIEOT_ControlOutputEventOriginator.

unitName The name of the input contact as configured in the

PRAESENSA system configuration.

113 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

9. OIP CONSTANT VALUES

In this document some constants are used. In this chapter all constants will be

connected to their values and to their reference type. Note that these constants are only

used within the Open Interface protocol and not in the diagnostic events and event

originators.

9.1 Protocol Constants

Related to the protocol, there are several constants. This section summary describes the

constants to be used to handle the protocol.

Constant Meaning Value

Port Number for the unsecure connection 9401

Port Number for the secure connection 9403

Transmit timeout for transmission heartbeat message 5 seconds

Check timeout to verify whether a message is received (reset

after each message reception)

15 seconds

Maximum command response time 10 seconds

Minimum message size (message-type + length) 8 bytes

Maximum message size 128 Kbytes

Maximum string size 64 Kbytes

9.2 General Constants

9.2.1 TOIEventId

The event Identification represents a diagnostic event as generated by the PRAESENSA

system. The type is mapped upon a UINT basic type as described in §3.4.3.1. In case

the command results in an error, a special value is returned, described in the table

below.

Constant name Value

OI_UNDEFINED_EVENTID 0xFFFFFFFF

9.2.2 TOICallId

The call Identification represents a running call in the PRAESENSA system and is

generated by the PRAESENSA system. The type is mapped upon a UINT basic type as

described in §3.4.3.1. In case the command result in an error, a special value is

returned, described in the table below.

Constant name Value

OI_UNDEFINED_CALLID 0xFFFFFFFF

114 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

9.2.3 TOIAlarmType

The system wide alarms as used within the PRAESENSA system are represented by the

alarm-type. The type is mapped upon a UINT basic type as described in §3.4.3.1. The

valid values used within this type are described in the table below.

Constant name Value

OIAT_EVAC 0x00000000

OIAT_FAULT 0x00000001

9.2.4 TOIAlarmState

The alarm states as used within the PRAESENSA system are represented by the Alarm-

state type. The type is mapped upon a UINT basic type as described in §3.4.3.1. The

valid values used within this type are described in the table below.

Constant name Value

OIAS_ACTIVE 0x00000000

OIAS_ACKNOWLEDGED 0x00000001

OIAS_INACTIVE 0x00000002

9.2.5 TOIResourceState

The resource states as used within the PRAESENSA system are represented by the

resource-state type. The type is mapped upon a UINT basic type as described in

§3.4.3.1. The valid values used within this type are described in the table below.

Constant name value

OIRS_FREE 0x00000000

OIRS_INUSE 0x00000001

9.2.6 TOIResourceFaultState

The resource fault states as used within the PRAESENSA system are represented by

the resource fault state type. The type is mapped upon a UINT basic type as described

in §3.4.3.1. The valid values used within this type are described in the table below.

Constant name value

OIRS_OK

Indicates that no fault is present for the resource that

affects the audio distribution of that resource.

0x00000000

OIRS_FAULT

Indicates that a fault is present for the resource that

affects the audio distribution of that resource.

0x00000001

115 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

9.2.7 TOICallState

The call states as used within the PRAESENSA system are represented by the Call-

state type. The type is mapped upon a UINT basic type as described in §3.4.3.1. The

valid values used within this type are described in the table below.

Constant name value

OICS_START

The call is in preparation.

0x00000000

OICS_STARTCHIME

The call is processing the start-chime.

0x00000001

OICS_MESSAGES

The call is processing the prerecorded messages

(including repeats).

0x00000002

OICS_LIVESPEECH

The call is in the live speech state. The audio input

passed during the start of the call is active.

0x00000003

OICS_ENDCHIME

The call is processing the end-chime.

0x00000004

OICS_END

Final state of the call. The associated call

identification is not valid any more.

0x00000005

OICS_ABORT

Final state of the call. The associated call

identification is not valid any more.

0x00000006

OICS_IDLE

The call is identified, but the processing needs to

be started (no resources are associated with the

call yet).

0x00000007

OICS_REPLAY

 Indicates that the mentioned call is waiting for

available resources or/and replaying a previously

recorded call.

0x00000008

9.2.8 TOICallStopReason

The reason for an aborted call to stop as used within the PRAESENSA system is

represented by the stopReason type. The type is mapped upon a UINT basic type as

described in §3.4.3.1. The valid values used within this type are described in the table

below.

Constant name value

OICSR_ORIGINATOR

The call was stopped by the originator.

0x00000000

116 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name value

OICSR_RESOURCE_LOST

The call was stopped due to lost or overruled

resources.

0x00000001

OICSR_SYSTEM

The call was stopped by the system.

0x00000002

OICSR_STOPCOMMAND

The call was stopped by a stop command.

0x00000003

OICSR_UNKNOWN

The call was stopped by an undefined reason.

0x00000004

9.2.9 TOICallResetReason

The reason for a call to reset as used within the PRAESENSA system is represented by

the resetReason type. The type is mapped upon a UINT basic type as described in

§3.4.3.1. The valid values used within this type are described in the table below.

Constant name value

OICRR_RESOURCE_LOST

The call was reset due to lost or overruled resources.

0x00000000

OICRR_SYSTEM

The call was reset by the system.

0x00000001

OICRR_UNKNOWN

The call was reset by an undefined reason.

0x00000002

9.2.10 TOIActionType

The action type describes the action performed on the specified diagnostic event. The

type is mapped upon a UINT basic type as described in §3.4.3.1. The valid values used

within this type are described in the table below.

Constant name Value

OIACT_NEW

The specified diagnostic event is added to the

event storage in the PRAESENSA system.

0x00000000

OIACT_ACKNOWLEDGED

The specified diagnostic (fault) event is

acknowledged.

0x00000001

OIACT_RESOLVED

The specified diagnostic (fault) event is resolved.

0x00000002

OIACT_RESET

The specified diagnostic (fault) event is reset.

0x00000003

117 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

OIACT_UPDATED

The specified diagnostic (fault) event is updated.

This means that additional information is added to

the diagnostic event (e.g. The number of WLS2-

Boards with failures is extending).

0x00000004

OIACT_REMOVED

The specified diagnostic event is removed from the

event storage in the PRAESENSA system.

0x00000005

OIACT_EXISTING

The specified diagnostic event is already present

in the storage. This action type is passed for each

diagnostic event already in the storage after

subscription for the events (See §4.35).

0x00000006

OIACT_EXISTING_LAST

The specified diagnostic event is already present

in the storage and it is the last present event sent,

or there are actually no fault events present in the

storage, in which case the specified diagnostic

event is of type DET_NoFaults.

0x00000007

9.2.11 TOICallOutputHandling

Describes how calls behave on routing availability. The type is mapped upon a UINT

basic type as described in §3.4.3.1.

Constant name Value

OICOH_PARTIAL

Partial calls are calls that proceed even in case not

all required zones are available.

0x00000000

OICOH_NON_PARTIAL

Not supported in the PRAESENSA system.

0x00000001

OICOH_STACKED

Stacked calls are calls that extend partial calls with

replays to previously unavailable zones.

Supported in the PRAESENSA system in release

2.00 and newer. Note that the PRA-LSCRF license

is required for the stacked call function.

0x00000002

9.2.12 TOICallStackingMode

Describes when recorded calls replay. A stacked call or a stacked call waits for each

zone to become available for replay. The type is mapped upon a UINT basic type as

described in §3.4.3.1

118 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

OICSM_WAIT_FOR_ALL

Wait with replay for all zones to become available

0x00000000

OICSM_WAIT_FOR_EACH

Start a replay for each zone to become available

0x00000001

9.2.13 TOICallTiming

Indicates the way the call must be handled. The type is mapped upon a UINT basic type

as described in §3.4.3.1

Constant name Value

OICTM_IMMEDIATE

Broadcast to the selected zones and zone groups

when the call is started.

0x00000000

OICTM_TIME_SHIFTED

Broadcast to the selected zones and zone groups

when the original call is finished to prevent audio

feedback during live speech. Supported in the

PRAESENSA system in release 2.00 and newer.

Note the PRA-LSCRF is required for the time-shift

function.

0x00000001

OICTM_MONITORED

Broadcast when the call is not cancelled within 2

seconds after the monitoring phase has finished.

Not supported in the PRAESENSA system.

0x00000002

9.2.14 TOICallStackingTimeout

Defines the limit of time for stacked call broadcasting. The type is mapped upon a UINT

basic type as described in §3.4.3.1

Constant name Value

OICST_INFINITE

Wait infinitely for zones to become available for

broadcasting.

0xFFFFFFFF

9.2.15 TOIVirtualControlInputDeactivation

Defines the behavior of the running action when deactivating a virtual control input. The

type is mapped upon a UINT basic type as described in §3.4.3.1

Constant name Value

OIVCI_STOP

Stop the running action gracefully.

0x00000000

119 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

OIVCI_ABORT

Abort the running action immediately.

0x00000001

9.2.16 TOIVirtualControlInputState

Defines the values returned when the state of virtual control inputs change. The type is

mapped upon a UINT basic type as described in §3.4.3.1

Constant name Value

OIVCIS_INACTIVE

Indicates that the virtual control input is in the

inactive state (associated action not running).

0x00000000

OIVCIS_ACTIVE

Indicates that the virtual control input is in the

active state (associated action running).

0x00000001

9.3 Diagnostic Constant values

9.3.1 TDiagEventState

The diagnostic event states as used within the PRAESENSA system are represented by

the Diagnostic-Event-state type. The type is mapped upon a UINT basic type as

described in §3.4.3.1. The valid values used within this type are described in the table

below.

Constant name value

DES_NEW 0x00000000

DES_ACKNOWLEDGED 0x00000001

DES_RESOLVED 0x00000002

DES_RESET 0x00000003

9.3.2 TDiagEventGroup

The diagnostic event groups as used within the PRAESENSA system are represented

by the Diagnostic-event-group type. The type is mapped upon a UINT basic type as

described in §3.4.3.1. The valid values used within this type are described in the table

below.

Constant name value

DEG_CallEventGroup 0x00000000

DEG_GeneralEventGroup 0x00000001

DEG_FaultEventGroup 0x00000002

120 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

9.3.3 TDiagEventType

The diagnostic event types as used within the PRAESENSA system are represented by

the diagnostic-event type. The type is mapped upon a UINT basic type as described in

§3.4.3.1. The valid values used within this type are described in the table below. In the

event that a value of TDiagEventType is received that is not in this table, a new version

of PRAESENSA is probably installed on the system controller.

Constant name Value

DET_CallChangeResourceV2 0x00467105

DET_CallEndV2 0x00467106

DET_CallStartV2 0x00467107

DET_CallTimeoutV2 0x00467108

DET_CallRestart 0x00467109

DET_CallReset 0x0046710B

DET_EvacAcknowledge 0x00467204

DET_EvacReset 0x00467205

DET_EvacSet 0x00467206

DET_SCStartup 0x00467209

DET_OpenInterfaceConnect 0x0046720A

DET_OpenInterfaceDisconnect 0x0046720B

DET_UnitConnect 0x0046720E

DET_CallLoggingSuspended 0x0046720F

DET_CallLoggingResumed 0x00467210

DET_UserLogIn 0x00467213

DET_UserLogOut 0x00467214

DET_UserLogInFailed 0x00467215

DET_OpenInterfaceConnectFailed 0x00467216

DET_BackupPowerModeStart 0x00467217

DET_BackupPowerModeEnd 0x00467218

DET_ConfigurationRestored 0x00467219

DET_AudioPathSupervision 0x00467308

DET_CallStationExtension 0x0046730A

DET_ConfigurationFile 0x0046730D

121 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

DET_ConfigurationVersion 0x0046730E

DET_IllegalConfiguration 0x00467312

DET_MicrophoneSupervision 0x00467315

DET_PrerecordedMessagesNames 0x00467319

DET_ControlInputLineFault 0x0046731B

DET_UnitMissing 0x0046731C

DET_UserInjectedFault 0x00467320

DET_NoFaults 0x00467334

DET_ZoneLineFault 0x00467335

DET_PrerecordedMessagesCorrupt 0x00467337

DET_NetworkChangeDiagEvent 0x00467339

DET_DemoteToBackup 0x0046733A

DET_InControl 0x0046733B

DET_Amp48VAFault 0x00467400

DET_Amp48VBFault 0x00467401

DET_AmpChannelFault 0x00467402

DET_AmpShortCircuitLineAFault 0x00467405

DET_AmpShortCircuitLineBFault 0x00467406

DET_EolFailureLineAFault 0x00467407

DET_EolFailureLineBFault 0x00467408

DET_Fan1Fault 0x00467409

DET_Fan2Fault 0x0046740a

DET_GroundShortFault 0x0046740b

DET_OverheatFault 0x0046740c

DET_UnitResetFault 0x0046740d

DET_IncompatibleFirmware 0x0046740e

DET_PoESupplyFault 0x0046740f

DET_PowerSupplyAFault 0x00467410

DET_PowerSupplyBFault 0x00467411

122 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

DET_ExternalPowerFault 0x00467412

DET_DcAux1Fault 0x00467413

DET_DcAux2Fault 0x00467414

DET_BatteryShortFault 0x00467415

DET_BatteryRiFault 0x00467416

DET_BatteryOverheatFault 0x00467417

DET_BatteryFloatChargeFault 0x00467418

DET_MainsAbsentChargerFault 0x00467419

DET_MainsAbsentPSU1Fault 0x0046741a

DET_BackupAbsentPSU1Fault 0x0046741b

DET_DcOut1PSU1Fault 0x0046741c

DET_DcOut2PSU1Fault 0x0046741d

DET_AudioLifelinePSU1Fault 0x0046741e

DET_AccSupplyPSU1Fault 0x0046741f

DET_MainsAbsentPSU2Fault 0x00467420

DET_BackupAbsentPSU2Fault 0x00467421

DET_DcOut1PSU2Fault 0x00467422

DET_DcOut2PSU2Fault 0x00467423

DET_AudioLifelinePSU2Fault 0x00467424

DET_AccSupplyPSU2Fault 0x00467425

DET_MainsAbsentPSU3Fault 0x00467426

DET_BackupAbsentPSU3Fault 0x00467427

DET_DcOut1PSU3Fault 0x00467428

DET_DcOut2PSU3Fault 0x00467429

DET_AudioLifelinePSU3Fault 0x0046742a

DET_AccSupplyPSU3Fault 0x0046742b

DET_AmpAcc18VFault 0x0046742c

DET_AmpSpareInternalFault 0x0046742d

DET_AmpChannelOverloadFault 0x0046742e

123 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

DET_PowerMainsSupplyFault 0x0046742f

DET_PowerBackupSupplyFault 0x00467430

DET_ChargerSupplyVoltageTooLowFault 0x00467431

DET_BatteryOvervoltageFault 0x00467432

DET_BatteryUndervoltageFault 0x00467433

DET_MediaClockFault 0x00467434

DET_ChargerFault 0x00467435

DET_Amp20VFault 0x00467436

DET_AmpPsuFault 0x00467437

DET_NetworkLatencyFault 0x00467438

DET_SynchronizationFault 0x00467439

DET_AudioDelayFault 0x0046743a

DET_InternalPowerFault 0x0046743b

DET_InternalCommunicationFault 0x0046743c

DET_VoIPFault 0x0046743d

DET_RemoteOutputFault 0x0046743e

DET_RemoteOutputLoopFault 0x0046743f

DET_RemoteOutputConfigurationFault 0x00467440

DET_LicenseFault 0x00467441

DET_RemoteSystemFault 0x00467442

DET_RemoteMainPowerFault 0x00467443

DET_RemoteBackupPowerFault 0x00467444

DET_RemoteGroundFault 0x00467445

DET_RemoteFault 0x00467446

DET_PowerSupplyFault 0x00467447

DET_StackedSwitchMismatchFault 0x00467448

DET_RedundantDataPathFault 0x00467449

DET_ControlOutputLineFault 0x0046744A

124 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

9.4 Message Types

The message types (command, response and notification messages) as used within the

PRAESENSA system are represented by the Message type. The type is mapped upon a

UINT basic type as described in §3.4.3.1. The valid values used within this type are

described in the table below.

Constant name Value

MESSAGETYPE_OIP_Login 0x00447002

MESSAGETYPE_OIP_StopCall 0x00447004

MESSAGETYPE_OIP_AbortCall 0x00447005

MESSAGETYPE_OIP_AddToCall 0x00447006

MESSAGETYPE_OIP_RemoveFromCall 0x00447007

MESSAGETYPE_OIP_AckAllFaults 0x00447008

MESSAGETYPE_OIP_ResetAllFaults 0x00447009

MESSAGETYPE_OIP_AckEvacAlarm 0x0044700a

MESSAGETYPE_OIP_SetSubscriptionAlarm 0x0044700d

MESSAGETYPE_OIP_SetSubscriptionResources 0x0044700e

MESSAGETYPE_OIP_GetNcoVersion 0x0044700f

MESSAGETYPE_OIP_IncrementBgmVolume 0x00447010

MESSAGETYPE_OIP_DecrementBgmVolume 0x00447011

MESSAGETYPE_OIP_SetBgmVolume 0x00447012

MESSAGETYPE_OIP_AddBgmRouting 0x00447013

MESSAGETYPE_OIP_RemoveBgmRouting 0x00447014

MESSAGETYPE_OIP_SetBgmRouting 0x00447015

MESSAGETYPE_OIP_SetSubscriptionBgmRouting 0x00447016

MESSAGETYPE_OIP_ReportFault 0x00447017

MESSAGETYPE_OIP_ResolveFault 0x00447018

MESSAGETYPE_OIP_AckFault 0x00447019

MESSAGETYPE_OIP_ResetFault 0x0044701a

MESSAGETYPE_OIP_SetSubscriptionEvents 0x0044701b

MESSAGETYPE_OIP_Response 0x0044701c

MESSAGETYPE_OIP_ResponseCallId 0x0044701d

MESSAGETYPE_OIP_ResponseGetNcoVersion 0x0044701e

125 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

MESSAGETYPE_OIP_ResponseReportFault 0x0044701f

MESSAGETYPE_OIP_ResponseProtocolError 0x00447020

MESSAGETYPE_OIP_NotifyAlarm 0x00447022

MESSAGETYPE_OIP_NotifyCall 0x00447023

MESSAGETYPE_OIP_NotifyResources 0x00447024

MESSAGETYPE_OIP_NotifyBgmRouting 0x00447025

MESSAGETYPE_OIP_NotifyDiagEvent 0x00447026

MESSAGETYPE_OIP_KeepAlive 0x00447027

MESSAGETYPE_OIP_StartCreatedCall 0x00447029

MESSAGETYPE_OIP_GetZoneNames 0x0044702a

MESSAGETYPE_OIP_GetZoneGroupNames 0x0044702b

MESSAGETYPE_OIP_GetMessageNames 0x0044702c

MESSAGETYPE_OIP_GetChimeNames 0x0044702d

MESSAGETYPE_OIP_GetAudioInputNames 0x0044702e

MESSAGETYPE_OIP_GetBgmChannelNames 0x0044702f

MESSAGETYPE_OIP_GetConfigId 0x00447030

MESSAGETYPE_OIP_SetSubscriptionBgmVolume 0x00447031

MESSAGETYPE_OIP_ResponseConfigId 0x00447032

MESSAGETYPE_OIP_ResponseNames 0x00447033

MESSAGETYPE_OIP_NotifyBgmVolume 0x00447034

MESSAGETYPE_OIP_IncrementBgmChannelVolume 0x00447035

MESSAGETYPE_OIP_DecrementBgmChannelVolume 0x00447036

MESSAGETYPE_OIP_CancelAll 0x00447038

MESSAGETYPE_OIP_CancelLast 0x00447039

MESSAGETYPE_OIP_ToggleBgmRouting 0x0044703A

MESSAGETYPE_OIP_ResetEvacAlarmEx 0x0044703B

MESSAGETYPE_OIP_SetSubscriptionResourceFaultState 0x0044703C

MESSAGETYPE_OIP_NotifyResourceFaultState 0x0044703D

MESSAGETYPE_OIP_CreateCallEx2 0x0044703E

126 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Constant name Value

MESSAGETYPE_OIP_ActivateVirtualControlInput 0x0044703F

MESSAGETYPE_OIP_DeactivateVirtualControlInput 0x00447040

MESSAGETYPE_OIP_SetSubscriptionUnitCount 0x00447041

MESSAGETYPE_OIP_SetSubscriptionVirtualControlInputs 0x00447042

MESSAGETYPE_OIP_GetVirtualControlInputNames 0x00447043

MESSAGETYPE_OIP_NotifyUnitCount 0x00447044

MESSAGETYPE_OIP_NotifyVirtualControlInputState 0x00447045

MESSAGETYPE_OIP_GetConfiguredUnits 0x00447046

MESSAGETYPE_OIP_GetConnectedUnits 0x00447047

MESSAGETYPE_OIP_ResponseUnits 0x00447048

MESSAGETYPE_OIP_CreateCallEx3 0x00447049

MESSAGETYPE_OIP_GetProtocolVersion 0x0044704A

MESSAGETYPE_OIP_ResponseGetProtocolVersion 0x0044704B

9.5 Event originator Message Types

The originator message types as used within the PRAESENSA system are represented

by the originator-message type. The type is mapped upon a UINT basic type as

described in §3.4.3.1. The valid values used within this type are described in the table

below.

Constant name value

OIEOT_NoEventOriginator 0x00477002

OIEOT_UnitEventOriginator 0x00477003

OIEOT_OpenInterfaceEventOriginator 0x00477004

OIEOT_ControlInputEventOriginator 0x00477005

OIEOT_AudioOutputEventOriginator 0x00477006

OIEOT_AudioInputEventOriginator 0x00477007

OIEOT_UserEventOriginator 0x00477009

OIEOT_NetworkEventOriginator 0x0047700A

OIEOT_StackedUnitEventOriginator 0x0047700B

OIEOT_ControlOutputEventOriginator 0x0047700C

127 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

10. ERROR CODES

Responses returned upon a remote function request contain an error field. In this

chapter an overview is given of the possible errors and their hexadecimal values.

Remote Function Services Error code Value

ERROR_OK

The command message is executed successfully.

0X00000000

ERROR_INVALID_PARAMETERS

If one of the parameters is wrong, this error code is

returned.

0X0044E000

ERROR_INTERNAL

The PRAESENSA system cannot fulfill the command

due to an internal error.

0X0044E001

ERROR_INVALID_MESSAGE_LENGTH

The overall message length of the data is too small

(below 8 bytes) or too large (above 128 Kbytes).

0X0044E002

ERROR_UNEXPECTED_COMMAND_TYPE

The message cannot be used, since the message-type

is not a known command by the PRAESENSA system.

0X0044E003

ERROR_TOO_MUCH_UNMARSHAL_DATA

Parsing of the message was done, but conform the

length information, there is still data left in the message.

The message length does not match the content. The

message is not accepted.

0X0044E004

ERROR_MUST_LOGIN_FIRST

Command received before the user is logged in.

0X0044E005

ERROR_INVALID_MESSAGETYPE

The message cannot be used, since the message-type

is not known by the PRAESENSA system.

0x0044E006

ERROR_STRING_TOO_LONG

The length of a string is too long (above 64 Kbytes).

Related to a string in a message, but message length

within boundaries.

0X0044E007

ERROR_UNEXPECTED_END

Parsing of the message goes beyond the end of the

message. Sum of the element lengths greater than the

message length.

0X0044E008

ERROR_CALL_NO_LONGER_EXISTS

The given callId belongs to a call that, even though it

was created (but not yet started via the Open

Interface), no longer exists. Successive use of this

callId will result in ERROR_INVALID_PARAMETERS.

0X0044E009

128 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

129 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

PART 2 – OPEN INTERFACE LIBRARY

This part 2 of the Open Interface programming instructions describes the Open Interface

Library of the PRAESENSA system.

130 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

11. INTRODUCTION

11.1 Purpose

The purpose of this document is to describe the usage of the PRAESENSA Open

Interface protocol version V10.0 based on a C# and .NET Framework implementation.

11.2 Scope

This user manual describes the use of the open interface in combination with C# and

.NET Framework. To understand this document, knowledge is expected on the following

issues:

• The C# programming language and its development environment.

• The PRAESENSA system and its installation.

This document is intended for users, who want to use the PRAESENSA Open Interface

into their application.

The user of this document cannot derive any rights from this document regarding the

programming interface. Extensions and improvements on the Open Interface can be

implemented when new versions of PRAESENSA are introduced.

11.3 Definitions, Acronyms and Abbreviations

DNS Domain Name System

OI Open Interface

PA Public address

11.4 References

This reference must be used for this document: UM_OPENINF

UG_PRAESENSA User guide PRAESENSA system

UG_OPENINF_PRAESENSA Native communication interface of the

PRAESENSA system

11.5 Summary

Chapter 12 describes the principles of controlling the PRAESENSA application using the

Open Interface.

Chapter 13 describes the constants, methods and events present on the Open Interface.

Chapter 14 provides a Visual Basic example where most of the functions described are

used.

131 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

12. APPLICATION CONTROL OVERVIEW

12.1 Principle

The PRAESENSA system is a public address system to perform calls to various areas in

a building. Each area, called a zone, is reached by means of one or more amplifiers and

is given a name. Multiple areas (zones) can be groups into a zone-group.

Special calls are identified within the PRAESENSA system as emergency calls. These

calls can be triggered by e.g. a fire alarm system. These emergency alarm calls contain

mostly repeated pre-recorded messages and put the system into a special (emergency)

state. The system remains in this state until an operator acknowledges and resets the

emergency state. Beside the normal calls, the PRAESENSA system monitors itself and

reports any faults found in the system.

To perform a PA call, the following main information needs to be passed to the

PRAESENSA system:

• The routing, a collection of zone names and/or zone Group names.

• The priority of the call.

• [Optional] A starting chime name to trigger the listeners that a call is starting.

• [Optional] A set of pre-recorded messages to be played.

• [Optional] A live speech section, where the operator can do his/her spoken

message. The microphone is identified by means of the name of an audio input.

• [Optional] An ending chime to notify the termination of the call.

Note that most of the inputs are optional, but at least one of the optional elements must

be defined to trigger a valid call.

Upon subscription for diagnostic events, the system first sent all available events as

present in the PRAESENSA system, followed by the new and updated events.

12.1.1 Limitations

Some of the type definitions described in section 13.2 are currently not supported and

should not be used.

• Only partial calls are supported. Setting the output handling to anything other

than OICOH_PARTIAL when creating a call will result in a parameter error.

• Only immediate calls are supported. Setting the call timing to anything other than

OICTM_IMMEDIATE when creating a call will result in a parameter error.

• Call stacking is supported in PRAESENSA release 2.00 and newer. Note that the

PRA-LSCRF license is required to use the call stacking function.

12.2 Referencing the library

Before the library can be used within your C# application, you need to add a reference to

the library. This can be done in the Visual Studio development environment, using the

Project→Add References… menu entry.

In the Add Reference dialog, select Assemblies, Extensions and then select

OpenInterfaceNetLibrary (if present). When not present, select the browse button and

select the file OpenInterfaceNetLibrary.dll in the installed location.

NOTE: The OpenInterfaceNetLibrary DLL targets .NET Framework 4.8.

132 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

12.3 Library usage in C#

After the reference addition, C# knows the methods and events of the PRAESENSA

open interface. The application can call the method on the library and the PRAESENSA

system will send events to the application.

Before the library can be used the following directive should be added.

using Bosch.PRAESENSA.OpenInterface;

To use the library, a client object needs to be constructed.

OpenInterfaceNetClient client = new OpenInterfaceNetClient();

12.4 Catching errors

Problems detected during a call to the PRAESENSA system will be reported by means

of TOIErrorCode return codes. If no errors are reported, the functions return

TOIErrorCode.OIERROR_OK.

The following code sample shows the use of a TOIErrorCode code to catch failures.

string ip = “192.168.53.100”;

string username = “user”;

string password = “password”;

TOIErrorCode ec = client.Connect(ip, username, password);

if (ec == TOIErrorCode.OIERROR_OK)

{

 // Continue as usual

}

else

{

 // Handle and/or report error

}

Explanation about error codes can be found in section 13.2.2.

133 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13. INTERFACE DEFINITION

13.1 Introduction

This chapter describes the various remote methods available on the PRAESENSA open

interface.

13.1.1 Method and Event explanation

The descriptions of the methods and the events contain a brief function explanation and

the declaration of the method/event. Further the following items can be present,

depending on the content of the method/event:

• Parameters:

A description of the parameters to be passed to the interface method.

• Return value:

A description of the return value returned by the interface method.

• Related event types:

A list of types, whereby the described function is operational. When called for other

type the Open Interface shall generate an exception.

• Error codes:

A list of error codes, which can be thrown during the execution of the interface

method. See §13.2.2 for a description of the error codes.

13.2 Enumeration type definitions

Within the library various enumeration types and constants are defined to prevent the

use of magic (non-explaining) numbers.

13.2.1 OpenInterfaceConstants

UNDEFINED_CALLID = UINT_MAX:

Standard indication for a call identifier to which no call is associated.

13.2.2 TIOErrorCode

The TIOErrorCode type represents the error values, which can be returned by the Open

Interface functions. The error values have the following meaning:

OIERROR_OK:

The Open Interface function has successfully executed.

OIERROR_ALREADY_LOGGED_IN:

The Open Interface is already logged in to a PRAESENSA system. Disconnect

from the PRAESENSA system and try again.

OIERROR_BAD_CREDENTIALS:

The Open Interface could not complete the connection, because the

username and/or the password is incorrect.

OIERROR_INTERNAL_ERROR:

The PRAESENSA system detected an internal error during the processing of

the command. Check the PRAESENSA System configuration. If persistent,

contact PRAESENSA customer services.

134 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIERROR_INVALID_PARAMETERS:

Indications that one or more parameters passed to the method do not match

the configured names present in the connected PRAESENSA system or that a

passed value is out of range. Strings are considered to be invalid when their

length exceeds 15000 characters.

OIERROR_NO_CONNECTION:

The Open Interface connection to the PRAESENSA system is not established.

OIERROR_NOT_REGISTERED:

A command was received via the Open Interface before the user is logged in.

Call the Connect method first and try again.

OIERROR_UNABLE_TO_MAKE_CONNECTION:

The Open Interface could not complete the connection, due to problems of the

link to the PRAESENSA system.

OIERROR_FUNCTION_NOT_SUPPORTED_BY_SERVER:

The PRAESENSA system controller does not support the function called. In

general this means that there is a protocol version mismatch. The added

functions to the open interface between the two versions cannot be executed.

OIERROR_CALL_NO_LONGER_EXISTS:

 The given callId belongs to a call that, even though it was created (but not yet

started via the Open Interface), no longer exists. Successive use of this callId

will result in OIERROR_INVALID_PARAMETERS.

OIERROR_NO_RESPONSE_RECEIVED:

 No answer was received after 15000 ms. Check the connection and try again.

OIERROR_PROTOCOL_ERROR_UNEXPECTED_END:

 Parsing of the response goes beyond the end of the message. Sum of the

element lengths is greater than the message length. In general this means

that there is a protocol version mismatch.

13.2.3 TOIAlarmType

The TOIAlarmType type defines the type of alarm

OIAT_EVAC:

Indicates that the alarm is of type evac.

OIAS_FAULT:

Indicates that the alarm is of type fault.

13.2.4 TOIAlarmState

The TOIAlarmState type defines the values returned when an alarm occurs.

OIAS_ACTIVE:

Indicates that the alarm state is active.

OIAS_ACKNOWLEDGED:

Indicates that an alarm situation is present and that the alarm state has been

acknowledged

135 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIAS_INACTIVE:

Indicates that no alarm situation is present.

13.2.5 TOICallPriority

The TOICallPriority type gives the various sub-ranges for the call priority. The actual

value of the call priority depends whether the call is a background music call, a normal

call or an emergency call. The emergency call can only be created when emergency

control (in the system controller configuration) is enabled. For each sub-range the

minimum and maximum value is given as constant. Calls with higher priority proceeds /

overrules calls with lower priority.

OI_MIN_PRIORITY_BGM = 0:

Represents the minimum background music priority value.

OI_MAX_PRIORITY_BGM = 31:

Represents the maximum background music priority value.

OI_MIN_PRIORITY_CALL = 32:

Represents the minimum normal call priority value.

OI_MAX_PRIORITY_CALL = 223:

Represents the maximum normal call priority value.

OI_MIN_PRIORITY_ALARM = 224:

Represents the minimum emergency call priority value.

OI_MAX_PRIORITY_ALARM = 255:

Represents the maximum emergency call priority value.

13.2.6 TOICallState

The TOICallState type defines the values returned when the state of a running call

changes. Together with the call states, a callId is passed, which identifies the associated

call.

OICS_START:

Indicates that the mentioned call has started.

OICS_STARTCHIME:

Indicates that the mentioned call is busy with its starting chime.

OICS_MESSAGES:

Indicates that the mentioned call is busy playing the specified messages for

the call.

OICS_LIVESPEECH:

Indicates that the mentioned call is in the live speech phase. The operator of

the call can now speak.

OICS_ENDCHIME:

Indicates that the mentioned call is busy with its ending chime.

OICS_END:

Indicates that the mentioned call has ended. The callId is no longer valid after

this notification.

OICS_ABORT:

Indicates that the mentioned call has been aborted by either the user or

136 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

another call started with a higher priority. The callId is after this notification no

longer valid.

OICS_IDLE:

Indicates that the mentioned call is known by the system, but not (yet)

operational. Note that a call can become idle when the call loses all his

resources (BGM call).

OICS_REPLAY:

 Indicates that the mentioned call is waiting for available resources and/or

replaying the recorded call

13.2.7 TOICallStopReason

The TOICallStopReason type defines possible stop and abort reasons for a stopped call.

This type is returned as a property by the StopReason getter supplied in the

DET_CallEndDiagEventV2 event type The getter Aborted indicates whether the call is

stopped or an aborted call. When a call ends naturally, the value will be

OICSR_ORIGINATOR.

OICSR_ORIGINATOR:

Indicates that the call was ended by the originator.

OICSR_RESOURCE_LOST:

 Indicates that resource(s) used by the ended call were lost or overruled.

OICSR_SYSTEM:

 Indicates that the ended call was stopped by the system.

OICSR_STOPCOMMAND:

 Indicates that the ended call was stopped by a stop command.

OICSR_UNKNOWN:

 Indicates that the aborted call was stopped for an undefined reason.

13.2.8 TOICallResetReason

The TOICallResetReason type defines possible reasons for a reset call. This type is

returned as a property by the ResetReason getter supplied in the

DET_CallResetDiagEvent event type

OICRR_RESOURCE_LOST:

 Indicates that resource(s) used by the reset call were lost or overruled.

OICRR_SYSTEM:

 Indicates that the call was reset by the system.

OICRR_UNKNOWN:

 Indicates that the call was reset for an undefined reason.

13.2.9 TOIResourceState

The TOIResourceState type defines the values returned when the state of resources

(read zone groups, zones or control outputs) present in the PRAESENSA system

changes.

137 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIRS_FREE:

Indicates that the resource is free to be used in a call.

OIRS_INUSE:

Indicates that the resource is in use by a running call.

13.2.10 TOIResourceFaultState

The TOIResourceFaultState type defines the values returned for the fault state when the

state of resources (read zone groups or zones) present in the PRAESENSA system

changes.

OIRS_OK

Indicates that no fault is present for the resource that affects the audio

distribution of that resource.

OIRS_FAULT:

Indicates that a fault is present for the resource that affects the audio

distribution of that resource.

13.2.11 TOIVirtualControlInputDeactivation

The TOIVirtualControlInputDeactivation type defines the behavior of the running action

when deactivating a virtual control input.

OIVCI_STOP:

Stop the running action gracefully.

OIVCI_ABORT:

Abort the running action immediately.

13.2.12 TOIVirtualControlInputState

The TOIVirtualControlInputState type defines the values returned when the state of

virtual control inputs change.

OIVCIS_ACTIVE:

Indicates that the control input is in the active state (associated action

running). During the time the action is aborting (gracefully) the control input

remains in the active state until the action has completed.

OIVCIS_INACTIVE:

Indicates that the control input is in the inactive state (associated action not

running).

13.2.13 TOIDiagEventType

The TOIDiagEventType type defines the type of event passed through the open

interface. It identifies the events and the associated members for that event.

Note that newer versions of PRAESENSA will most likely send newer (other) types. The

application should check and report this so it can be adapted to the new situation.

13.2.13.1 Call Diagnostic Event-Group Event-types

OIDET_CallStartV2:

Indicates that the diagnostic event represents the start of a call in the

PRAESENSA system.

138 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_CallEndV2:

Indicates that the diagnostic event represents the end (or abort) of a call in the

PRAESENSA system.

OIDET_CallChangeResourceV2:

Indicates that the diagnostic event represents a change in routing of a running

call. The diagnostic event indicates whether zones are added to the routing or

removed from the routing.

OIDET_CallTimeoutV2:

This diagnostic event indicates that a stacked call has reached its time-out

point and implies that the call has been unable to reach all required zones.

The diagnostic event provides the unreached zones.

OIDET_CALLRESTART:

 Indicates that the diagnostic events represents the restart of a call in the

PRAESENSA system.

OIDET_CALLRESET

 Indicates that the diagnostic events represents a reset of a call in the

PRAESENSA system. A reset indicates that the call will be restarted.

13.2.13.2 General Diagnostic Event-Group Event-types

OIDET_EvacAcknowledge:

Indicates that the diagnostic event represents that the system emergency

state is acknowledged.

OIDET_EvacReset:

Indicates that the diagnostic event represents that the system emergency

state is reset.

OIDET_EvacSet:

Indicates that the diagnostic event represents that the system emergency

state is set (activated).

OIDET_UnitConnect:

Indicates that the diagnostic event represents that a unit has connected to or

disconnected from the PRAESENSA system.

OIDET_SCStartup:

Indicates that the diagnostic event represents that the PRAESENSA system

has started.

OIDET_OpenInterfaceConnect:

Indicates that the diagnostic event represents that a remote system has

connected to the PRAESENSA system using the open interface.

OIDET_OpenInterfaceDisconnect:

Indicates that the diagnostic event represents that a remote system has

disconnected from the PRAESENSA system using the open interface.

OIDET_OpenInterfaceConnectFailed:

Indicates that the diagnostic event represents that a remote system has

attempted to connect to the PRAESENSA system using the open interface but

failed.

139 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_CallLoggingSuspended:

Indicates that call logging has been suspended because of a logging queue

overflow.

OIDET_CallLoggingResumed:

Indicates that call logging has been resumed.

OIDET_UserLogIn:

Indicates that the diagnostic event represents that a user has logged in..

OIDET_UserLogOut:

Indicates that the diagnostic event represents that a user has logged out..

OIDET_UserLogInFailed:

Indicates that the diagnostic event represents that a login attempt has failed.

OIDET_BackupPowerModeStart:

Indicates that the backup power mode has started. This event is only

generated when backup power mode (in the system settings) has been

configured not to generate a fault event.

OIDET_BackupPowerModeEnd:

Indicates that the backup power mode has ended. This event is only

generated when backup power mode (in the system settings) has been

configured not to generate a fault event.

OIDET_ConfigurationRestored:

Indicates that the backup has been restored. It also indicates which parts of

the configuration are restored (configuration, security settings, messages).

OIDET_DemoteToBackup:

Indicates that the current duty controller in a redundant system detected a

critical fault and demoted itself to backup.

OIDET_InControl:

Indicates that a call station in a group is now in control.

13.2.13.3 Fault Diagnostic Event-Group Event-types

Amplifier specific faults contain the Severity property (see chapter §13.5.4 for a

description of the fault event classes). The severity can either be high or low. If the

severity is high, the fault aggregates to a zone fault in the PRAESENSA system. This

indicates that audio routing is not possible for (a part of) that zone.

OIDET_AudioPathSupervision:

Indicates that the diagnostic event represents detection of an audio-path

failure.

OIDET_MicrophoneSupervision:

Indicates that the diagnostic event represents detection of microphone failure.

Note that this diagnostic event only applies to a call station.

OIDET_ControlInputLineFault:

Indicates that the diagnostic event represents detection of a control input line

failure.

OIDET_CallStationExtension:

Indicates that the diagnostic event represents a mismatch between the

140 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

number of configured call station extensions and the number of detected call

station extensions.

OIDET_ConfigurationFile:

Indicates that the diagnostic event represents detection of a missing or corrupt

configuration file.

OIDET_ConfigurationVersion:

Indicates that the diagnostic event represents a mismatch between the

configuration file version and the required configuration file version. The

configuration file requires conversion.

OIDET_IllegalConfiguration:

Indicates that the diagnostic event represents an inconsistency within the

active configuration file: internal references between configuration items could

not be verified.

OIDET_PrerecordedMessagesNames:

Indicates that the diagnostic event represents a mismatch between the

configured (and used) prerecorded message-names and the detected

prerecorded message-names.

OIDET_PrerecordedMessagesCorrupt:

Indicates that the diagnostic event represents one or more prerecorded

messages in the PRAESENSA system is corrupt and cannot be used.

OIDET_UnitMissing:

Indicates that the diagnostic event represents a missing configured unit.

OIDET_UnitReset:

Indicates that the diagnostic event represents detection that a unit has

restarted.

OIDET_UserInjectedFault:

Indicates that the diagnostic event represents a fault injected by a user or

remote system.

OIDET_NoFaults:

Special event type that does not represent an actual fault, but is used to

indicate that there are no existing fault events on the storage of the

PRAESENSA system.

OIDET_ZoneLineFault:

Indicates that the diagnostic event represents that a Zone Line Fault that is

injected by a remote system by triggering configured control input.

OIDET_NetworkChangeDiagEvent:

Indicates that the diagnostic event represents that there was a change in the

network (broken links between devices).

OIDET_IncompatibleFirmware:

Indicates that the diagnostic event represents that a device contains

incompatible firmware and cannot be used in the PRAESENSA system.

OIDET_Amp48VAFault:

This diagnostic event indicates the loss of 48V A supply for the amplifier.

Severity is high if DET_Amp48VBFault is also reported.

141 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_Amp48VBFault:

This diagnostic event indicates the loss 48V B supply. Severity is high if

DET_Amp48VAFault is also reported.

OIDET_AmpChannelFault:

This diagnostic event indicates a channel fault internally in the amplifier. If not

used already, the spare channel takes over the functionality of the channel.

Severity is high if the spare channel is already in use.

OIDET_AmpShortCircuitLineAFault:

This diagnostic event indicates for the amplifier channel the hardware short

detection is triggered or the output voltage is too low due to a short on line A.

OIDET_AmpShortCircuitLineBFault:

This diagnostic event indicates for the amplifier channel the hardware short

detection is triggered or the output voltage is too low due to a short on line B.

OIDET_AmpAcc18VFault:

This diagnostic event indicates failure of the amplifier lifeline power supply.

The severity is not used.

OIDET_AmpSpareInternalFault:

This diagnostic event indicates an internal failure in the amplifier spare

channel and can no longer be used. Severity is always high.

OIDET_AmpChannelOverloadFault:

This diagnostic event indicates for the amplifier channel an output overload

has occurred.

OIDET_AmpEolFailureLineAFault:

This diagnostic event indicates that the end-of-line device for the amplifier

channel on line A is disconnected (the end-of-line pilot tone is not present).

OIDET_AmpEolFailureLineBFault:

This diagnostic event indicates that the end-of-line device for the amplifier

channel on line B is disconnected (the end-of-line pilot tone is not present).

OIDET_GroundShortFault:

This diagnostic event indicates that a ground fault is signaled by the amplifier

hardware.

OIDET_OverheatFault:

This diagnostic event indicates that amplifier hardware is overheated. All

channels are disabled and severity is always high.

OIDET_PowerMainsSupply:

Indicates that the diagnostic event represents detection of loss of mains power

for a Multifunction Power Supply.

OIDET_PowerBackupSupply:

Indicates that the diagnostic event represents detection of loss of the backup

power supply for a Multifunction Power Supply.

OIDET_MainsAbsentPSU1Fault:

This diagnostic event indicates absence of the output 1 mains power. The

number matches the screening at the back-panel of the Multifunction Power

Supply .

142 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_MainsAbsentPSU2Fault:

This diagnostic event indicates absence of the output 2 mains power. The

number matches the screening at the back-panel of the Multifunction Power

Supply .

OIDET_MainsAbsentPSU3Fault:

This diagnostic event indicates absence of the output 3 mains power. The

number matches the screening at the back-panel of the Multifunction Power

Supply .

OIDET_BackupAbsentPSU1Fault:

This diagnostic event indicates absence of the output 1 12V DC backup

power. The number matches the screening at the back-panel of the

multifunction power supply.

OIDET_BackupAbsentPSU2Fault:

This diagnostic event indicates absence of the output 2 12V DC backup

power. The number matches the screening at the back-panel of the

Multifunction power supply.

OIDET_BackupAbsentPSU3Fault:

This diagnostic event indicates absence of the output 3 12V DC backup

power. The number matches the screening at the back-panel of the

Multifunction Power Supply .

OIDET_DcOut1PSU1Fault:

This diagnostic event indicates a missing 48V DC output for connector 1A.

The numbers match the screening at the back-panel of the Multifunction

Power Supply .

OIDET_DcOut2PSU1Fault:

This diagnostic event indicates a missing 48V DC output for connector 1B.

The numbers match the screening at the back-panel of the Multifunction

Power Supply .

OIDET_DcOut1PSU2Fault:

This diagnostic event indicates a missing 48V DC output for connector 2A.

The numbers match the screening at the back-panel of the Multifunction

Power Supply .

OIDET_DcOut2PSU2Fault:

This diagnostic event indicates a missing 48V DC output for connector 2B.

The numbers match the screening at the back-panel of the Multifunction

Power Supply .

OIDET_DcOut1PSU3Fault:

This diagnostic event indicates a missing 48V DC output for connector 3A.

The numbers match the screening at the back-panel of the Multifunction

Power Supply .

OIDET_DcOut2PSU3Fault:

This diagnostic event indicates a missing 48V DC output for connector 3B.

The numbers match the screening at the back-panel of the Multifunction

Power Supply .

143 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_AudioLifelinePSU1Fault:

This diagnostic event indicates a wiring problem in the ACC connector with the

lifeline analog audio signal for output 1. The number matches the screening at

the back-panel of the Multifunction Power Supply .

OIDET_AudioLifelinePSU2Fault:

This diagnostic event indicates a wiring problem in the ACC connector with the

lifeline analog audio signal for output 2. The number matches the screening at

the back-panel of the Multifunction Power Supply .

OIDET_AudioLifelinePSU3Fault:

This diagnostic event indicates a wiring problem in the ACC connector with the

lifeline analog audio signal for output 3. The number matches the screening at

the back-panel of the Multifunction Power Supply .

OIDET_AccSupplyPSU1Fault:

This diagnostic event indicates a missing 10 to 18V at the ACC connector for

output 1. The number matches the screening at the back-panel of the

Multifunction Power Supply .

OIDET_AccSupplyPSU2Fault:

This diagnostic event indicates a missing 10 to 18V at the ACC connector for

output 2. The number matches the screening at the back-panel of the

Multifunction Power Supply .

OIDET_AccSupplyPSU3Fault:

This diagnostic event indicates a missing 10 to 18V at the ACC connector for

output 3. The number matches the screening at the back-panel of the

Multifunction Power Supply .

OIDET_Fan1Fault:

This diagnostic event indicates that fan 1 in the Multifunction Power Supply is

broken.

OIDET_Fan2Fault:

This diagnostic event indicates that fan 2 in the Multifunction Power Supply is

broken.

OIDET_DcAux1Fault:

This diagnostic event indicates the absence of 24V DC aux 1 voltage of the

Multifunction Power Supply. The number matches the screening at the back-

panel of the device.

OIDET_DcAux2Fault:

This diagnostic event indicates the absence of 24V DC aux 2 voltage of the

Multifunction Power Supply. The number matches the screening at the back-

panel of the device.

OIDET_BatteryShortFault:

This diagnostic event indicates a short in the external battery of the

Multifunction Power Supply.

OIDET_BatteryRiFault:

This diagnostic event indicates a Ri fault for the connected battery of the

Multifunction Power Supply. This fault depends on the configured battery

capacity in the PRAESENSA system if a fault is reported.

144 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_BatteryOverheatFault:

This diagnostic event indicates that the temperature of the connected battery

of the Multifunction Power Supply is not in correct working range

OIDET_BatteryFloatChargeFault:

This diagnostic event indicates that the battery of the Multifunction Power

Supply is most likely broken. The charger enters a float state when the State

of Charge (SoC) is 100%. In this state a low charge current is expected just to

compensate the self-discharge of the battery. When the charge current is very

high the battery is probably broken and therefore the fault is reported. The

charger is suspended for safety reasons.

OIDET_MainsAbsentChargerFault:

This diagnostic event indicates that the mains converter for the charger is

defect which prevents charging the battery correctly.

OIDET_PoESupplyFault:

This diagnostic event indicates that a mismatch is detected the number of

Power over Ethernet connections to the call station and the number of

expected Power Over Ethernet inputs configured in the PRAESENSA system.

OIDET_PowerSupplyAFault:

This diagnostic event indicates that the power supply input A level on the

system controller is not within range. The fault is only reported if the power

supply input is configured to be supervised in the PRAESENSA system.

OIDET_PowerSupplyBFault:

This diagnostic event indicates that the power supply input B level on the

system controller is not within range. The fault is only reported if the power

supply input is configured to be supervised in the PRAESENSA system.

OIDET_ExternalPowerFault:

This diagnostic event indicates that the PRAESENSA system is now in backup

power mode. This event is only generated when backup power mode (in the

system settings) has been configured to generate a fault event.

OIDET_ChargerSupplyVoltageTooLowFault:

This diagnostic event indicates that the charger supply voltage is too low

which prevents charging the battery correctly.

OIDET_BatteryOvervoltageFault:

This diagnostic event indicates that the internal charger is defect and is

switched off for safety reasons.

OIDET_BatteryUndervoltageFault:

This diagnostic event indicates that there is an undervoltage situation when

mains is absent. The battery is too empty to operate on.

OIDET_MediaClockFault:

This diagnostic event indicates there are one or more devices that failed to

lock to PTP for a longer period of time.

OIDET_ChargerFault

This diagnostics event indicates an internal charger fault which prevents

charging the battery correctly.

145 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIDET_Amp20VFault

This diagnostic event indicates the failure of the power convertor for the

controller section of the amplifier.

OIDET_AmpPsuFault

This diagnostic event indicates the failure of the power convertor for the audio

section of the amplifier.

OIDET_NetworkLatencyFault

This diagnostic event indicates that an audio flow gets interrupted by network

delay and network jitter.

OIDET_SynchronizationFault

This diagnostic event indicates that the configuration synchronization between a

standby controller and the duty controller of a redundant system failed.

OIDET_AudioDelayFault

This diagnostic event indicates that DDR audio issues occurred on the amplifier.

OIDET_InternalPowerFault

This diagnostic event indicates that one of the voltages on the powerlines in the

MPS are out of bound.

OIDET_InternalCommunicationFault

This diagnostic event indicates that one or several boards in the MPS are not

responding.

OIDET_VoIPFault

 This diagnostic event indicates that VoIP calls using SIP and the PABX are no

longer

 possible due to configuration- or connectivity issues.

OIDET_RemoteOutputFault

This diagnostic event indicates there is a remote audio output fault on the remote

system device.

OIDET_RemoteOutputLoopFault

This diagnostic event indicates that a loop is detected for a remote audio output.

A loop is defined as a remote audio output which is linked to a zone group on a

system controller which contains remote audio outputs that are linked back to

one or more zone groups located on the originating system controller.

OIDET_RemoteOutputConfigurationFault

This diagnostic event indicates that an invalid remote zone group name is

configured for the remote audio output.

OIDET_LicenseFault

This diagnostic event indicates that there is insufficient license of a specific

license type.

OIDET_RemoteSystemFault

146 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

This diagnostic event indicates that a system fault is detected on another remote

system controller.

OIDET_RemoteMainPowerFault

This diagnostic event indicates that a main power fault is detected on another

remote system controller.

OIDET_RemoteBackupPowerFault

This diagnostic event indicates that a backup power fault is detected on another

remote system controller.

OIDET_RemoteGroundFault

This diagnostic event indicates that a ground fault is detected on another remote

system controller.

OIDET_RemoteFault

This diagnostic event indicates that a fault is detected on another remote system

controller.

OIDET_PowerSupplyFault

This diagnostics event indicates that is a power fault detected on a device

OIDET_StackedSwitchMismatchFault

This diagnostics event indicates that there is a mismatch between the number of

detected switches in a “stacked switch” and number configurated.

OIDET_RedundantDataPathFault

This diagnostics event indicates that the interconnection between the stacked

Cisco IE5000 switches is not redundant.

OIDET_ControlOutputLineFault

Indicates that the diagnostic event represents detection of a control output line

failure..

13.2.14 TOIDiagEventGroup

The TOIDiagEventGroup type divides each event into groups. Each event belongs to

maximum one group. The groups are used to divide the event generation. The group-

type is used for subscription of the events. The relation between the groups and the

event-types is given in section 13.2.11, presented as sub-sections.

OIDEG_CALLEVENTGROUP:

Indicates that the diagnostic event is related to call events.

OIDEG_GENERALEVENTGROUP:

Indicates that the diagnostic event represents a general event.

OIDEG_FAULTEVENTGROUP:

Indicates that the diagnostic event represents a fault event. Faults have a

state and can be acknowledged, resolved or reset.

OIDEG_UNKNOWNDIAGEVENTGROUP = UINT_MAX:

Indicates that the diagnostic event couldn’t be grouped in one of the groups

above.

147 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.2.15 TOIEventOriginatorType

The TOIEventOriginatorType type represents the various types of the originators that

generated the received event.

OIEOT_NOEVENTORIGINATOR = 0x00477002:

Indicates that the event originator is not known.

OIEOT_UNITEVENTORIGINATOR = 0x00477003:

Indicates that the event originator is a unit.

OIEOT_OPENINTERFACEEVENTORIGINATOR = 0x00477004:

Indicates that the event originator is a system connected to the open interface

of the PRAESENSA system.

OIEOT_CONTROLINPUTEVENTORIGINATOR = 0x00477005:

Indicates that the event originator is a control-input.

OIEOT_AUDIOOUTPUTEVENTORIGINATOR = 0x00477006:

Indicates that the event originator is an audio-output.

OIEOT_AUDIOINPUTEVENTORIGINATOR = 0x00477007:

Indicates that the event originator is an audio input.

OIEOT_USEREVENTORIGINATOR = 0x00477009:

Indicates that the event originator is a user.

OIEOT_NETWORKEVENTORIGINATOR = 0x0047700A:

Indicates that the event originator represents a network connection. Used for

user login events.

OIEOT_STACKEDUNITEVENTORIGINATOR = 0x0047700B:

Indicates that the event originator is a sub-unit of a composite unit. Used for

stacked Cisco switches.

OIEOT_CONTROLOUTPUTEVENTORIGINATOR = 0x0047700C:

Indicates that the event originator is a control-output.

13.2.16 TOIDiagEventState

The TOIDiagEventState type represents the state of the fault-group diagnostic events.

Other diagnostic event-types always will have the state RESET.

OIDES_NEW:

Indicates that the diagnostic event is added to the system.

OIDES_ACKNOWLEDGED:

Indicates that the diagnostic fault event is acknowledged.

OIDES_RESOLVED:

Indicates that the diagnostic fault event is resolved.

OIDES_RESET:

Indicates that the diagnostic fault event is reset.

13.2.17 TOIActionType

The TOIActionType type represents the action done on the Fault-type events. Other

diagnostic event-types always received the action type NEW or REMOVED.

148 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

OIACT_NEW:

Indicates that the Diagnostic event is added to the system.

OIACT_ACKNOWLEDGED:

Indicates that the Diagnostic event is acknowledged (fault events only).

OIACT_RESOLVED:

Indicates that the Diagnostic event is resolved (fault events only).

OIACT_RESET:

Indicates that the Diagnostic event is reset (fault events only).

OIACT_UPDATED:

Indicates that the Diagnostic event is updated (additional information is added

to an existing event)

OIACT_REMOVED:

Indicates that the Diagnostic event is removed from the system.

OIACT_ EXISTING:

The specified diagnostic event is already present in the PRAESENSA System.

This action type is passed for each diagnostic event already present on the

storage of the PRAESENSA System after subscription for the events.

OIACT_EXISTING_LAST:

The specified diagnostic event is already present on the PRAESENSA System

storage and it is the last present event sent, or there are actually no fault

events present on the storage of the PRAESENSA System, in which case the

specified diagnostic event is of type OIDET_NOFAULTS.

13.2.18 TOICallOutputHandling

Describes how calls behave on routing availability.

OICOH_PARTIAL:

Partial calls are calls that proceed even in case not all required zones are

available.

OICOH_NON_PARTIAL:

Not supported in the PRAESENSA system.

OICOH_STACKED:

Stacked calls are calls that extend partial calls with replays to previously

unavailable zones. Supported in the PRAESENSA system release 2.10 and

newer. Note that the PRA-LSCRF license is required to use the stacked call

function.

13.2.19 TOICallStackingMode

Describes when recorded calls replay. A stacked call or a stacked call waits for each

zone to become available for replay.

OICSM_WAIT_FOR_ALL:

Wait with replay for all zones to become available

OICSM_WAIT_FOR_EACH:

Start a replay for each zone to become available

149 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.2.20 TOICallTiming

Indicates the way the call must be handled.

OICTM_IMMEDIATE:

Broadcast to the selected zones and zone groups when the call is started.

OICSM_TIME_SHIFTED:

Broadcast to the selected zones and zone groups when the original call is

finished to prevent audio feedback during live speech. Supported in the

PRAESENSA system in release 2.00 and newer. Note the PRA-LSCRF

license is required to use the time-shifted function.

OICSM_MONITORED:

Broadcast when the call is not cancelled within 2 seconds after the monitoring

phase has finished. Not supported in the PRAESENSA system.

13.3 Methods

13.3.1 Connect

Make a connection with a system controller. A connection is required before other

methods can be used. The connection is done using the port number 9401 (non-secure)

or 9403 (secure).

For secure connections, TLS 1.2 is used. The certificate supplied by the system

controller is automatically accepted without validation.

TOIErrorCode Connect(string hostnameOrIP, string username, string password, bool

secure = true)

Parameters:

hostnameOrIP IP address of the system controller, format

“127.0.0.1” or the DNS name of the PRAESENSA

system controller.

username Name of the user as defined during the “User

Management” configuration of the PRAESENSA

system.

password Password of the user.

secure Use a secure connection. True by default.

Return value:

Error code indicating success or failure.

13.3.2 Disconnect

Gracefully terminates a connection with the system controller. After a successful call to

this function it is no longer possible to use functions of the open interface.

TOIErrorCode Disconnect()

Return value:

Error code indicating success or failure.

150 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.3.3 GetNcoVersion

Retrieves the software release of the system controller.

TOIErrorCode GetNcoVersion(out string release)

Parameters:

release Software release of the system controller

Return value:

Error code indicating success or failure.

13.3.4 GetProtocolVersion

Retrieves the protocol version of the Open Interface as major.minor. This is not the

software version of the PRAESENSA system.

TOIErrorCode GetProtocolVersion(out int major, out int minor)

Parameter

major Major version number of the Open Interface

protocol

minor Minor version number of the Open Interface

protocol

Error codes:

Error code indicating success or failure.

13.3.5 CreateCallEx2

Create (but do not start) a call with the given parameters.

TOIErrorCode CreateCallEx2(List<string> routing, uint priority, TOICallOutputHandling

outputHandling, TOICallStackingMode stackingMode, uint stackingTimeout,

string startchime, string endchime, bool livespeech, string audioinput,

List<string> messages, uint repeat, TOICallTiming callTiming, string

preMonitorDest, uint liveSpeechAttenuation, uint startChimeAttenuation, uint

endChimeAttenuation, uint messageAttenuation, out uint callId)

Parameters:

routing List of names of zone groups, zones and/or control

outputs. The routing is formatted as a comma

separated set of resource names.

priority The priority of the call. See §13.2.5 for the value

range definitions. When emergency control (in the

system controller configuration) is disabled and the

call priority is in the emergency call priority range

(from 224 to 255) then this method will return a

parameter error.

151 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

outputHandling Whether the call is partial or stacked. There are

two possible values: OICOH_PARTIAL and

OICOH_STACKED.

Partial calls are calls that proceed even in case not

all required zones are available. Stacked calls are

calls that extend partial calls with replays to

previously unavailable zones. Stacked calls are

only available within the business call priority

range. This means that stacking emergency and

BGM priority calls is not possible.

stackingMode Whether a stacked call waits for all zones to

become available or a stacked call waits for each

zone to become available for replay. There are two

possible values: OICSM_WAIT_FOR_ALL and

OICSM_WAIT_FOR_EACH. This parameter is

ignored when outputHandling is set to

OICOH_PARTIAL.

stackingTimeout Amount of seconds for a stacked call to wait for

available resources. The time-out countdown is

started at the moment the original call has ended.

The accepted range is 1 to 3600 seconds; the

value OICST_INFINITE is used to wait infinitely.

This parameter is ignored when outputHandling is

set to OICOH_PARTIAL.

startChime The name of the start chime.

endChime The name of the end chime.

liveSpeech Whether or not the call has a live speech phase.

True = live speech, False = no live speech.

audioInput Name of the audio Input (only used when live

speech is true).

messages List of names of prerecorded messages. The

messages parameter is formatted as a comma

separated set of message names.

repeat How many times the messages should be

repeated. Value can be:

-1: Repeat infinity.

0: Play Message once.

1 … 32767: Repeat count.

Note that the value 1 indicates one repeat, so the

message is played twice.

152 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

callTiming Indicates the way the call must be handled. There

are three possible values: OICTM_IMMEDIATE,

OICTM_TIME_SHIFTED and

OICTM_MONITORED. An immediate call will be

broadcast to the selected zones and zone groups

when the call is started. A time shifted call will be

broadcast to the selected zones and zone groups

when the original call is finished to prevent audio

feedback during live speech. A monitored call will

broadcast when it is not cancelled within 2

seconds after the monitoring phase has finished.

preMonitorDest The destination zone of the pre-monitor phase of a

pre-monitored call. When the call is not pre-

monitored, this value is ignored. This parameter is

ignored when callTiming is set to

OICTM_IMMEDIATE or OICTM_TIME_SHIFTED.

liveSpeechAttenuation The attenuation to be used for the audio input

during the live speech phase. Range: 0..60 dB.

startChimeAttenuation The attenuation to be used for the chime generator

during the start chime phase. Range: 0..60 dB.

endChimeAttenuation The attenuation to be used for the chime generator

during the end chime phase. Range: 0..60 dB.

messageAttenuation The attenuation to be used for the message

generator during the prerecorded message phase.

Range: 0..60 dB.

callId Unique identification of the call (only valid when

return value is OIERROR_OK)

Return value:

Error code indicating success or failure.

13.3.6 CreateCallEx3

Create (but do not start) a call with the given parameters.

TOIErrorCode CreateCallEx3(List<string> routing, uint priority, TOICallOutputHandling

outputHandling, TOICallStackingMode stackingMode, uint stackingTimeout,

string startchime, string endchime, bool livespeech, string audioinput,

List<string> messages, uint repeat, TOICallTiming callTiming, string

preMonitorDest, uint liveSpeechAttenuation, uint startChimeAttenuation, uint

endChimeAttenuation, uint messageAttenuation, bool restartCall, out uint callId)

Parameters:

routing List of names of zone groups, zones and/or control

outputs.

priority The priority of the call. See §13.2.5 for the value

range definitions. When emergency control (in the

153 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

system controller configuration) is disabled and the

call priority is in the emergency call priority range

(from 224 to 255) then this method will return a

parameter error.

outputHandling Whether the call is partial or stacked. There are

two possible values: OICOH_PARTIAL and

OICOH_STACKED.

Partial calls are calls that proceed even in case not

all required zones are available. Stacked calls are

calls that extend partial calls with replays to

previously unavailable zones. Stacked calls are

only available within the business call priority

range. This means that stacking emergency and

BGM priority calls is not possible.

stackingMode Whether a stacked call waits for all zones to

become available or a stacked call waits for each

zone to become available for replay. There are two

possible values: OICSM_WAIT_FOR_ALL and

OICSM_WAIT_FOR_EACH. This parameter is

ignored when outputHandling is set to

OICOH_PARTIAL.

stackingTimeout Amount of seconds for a stacked call to wait for

available resources. The time-out countdown is

started at the moment the original call has ended.

The accepted range is 1 to 3600 seconds; the

value OICST_INFINITE is used to wait infinitely.

This parameter is ignored when outputHandling is

set to OICOH_PARTIAL.

startChime The name of the start chime.

endChime The name of the end chime.

liveSpeech Whether or not the call has a live speech phase.

True = live speech, False = no live speech.

audioInput Name of the audio Input (only used when live

speech is true).

messages List of names of prerecorded messages. The

messages parameter is formatted as a comma

separated set of message names.

repeat How many times the messages should be

repeated. Value can be:

-1: Repeat infinity.

0: Play Message once.

154 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

1 … 32767: Repeat count.

Note that the value 1 indicates one repeat, so the

message is played twice.

callTiming Indicates the way the call must be handled. There

are three possible values: OICTM_IMMEDIATE,

OICTM_TIME_SHIFTED and

OICTM_MONITORED. An immediate call will be

broadcast to the selected zones and zone groups

when the call is started. A time shifted call will be

broadcast to the selected zones and zone groups

when the original call is finished to prevent audio

feedback during live speech. A monitored call will

broadcast when it is not cancelled within 2

seconds after the monitoring phase has finished.

preMonitorDest The destination zone of the pre-monitor phase of a

pre-monitored call. When the call is not pre-

monitored, this value is ignored. This parameter is

ignored when callTiming is set to

OICTM_IMMEDIATE or OICTM_TIME_SHIFTED.

liveSpeechAttenuation The attenuation to be used for the audio input

during the live speech phase. Range: 0..60 dB.

startChimeAttenuation The attenuation to be used for the chime generator

during the start chime phase. Range: 0..60 dB.

endChimeAttenuation The attenuation to be used for the chime generator

during the end chime phase. Range: 0..60 dB.

messageAttenuation The attenuation to be used for the message

generator during the prerecorded message phase.

Range: 0..60 dB.

restartCall Indication if the call should be restarted after an

interruption.

callId Unique identification of the call (only valid when

return value is OIERROR_OK).

 Return value:

Error code indicating success or failure

13.3.7 StartCreatedCall

Start a previously created call. If the call was started successfully, call state update

events for this call will be sent via the Open Interface.

TOIErrorCode StartCreatedCall(uint callId)

155 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameters:

callId unique identification of the call, returned by

CreateCallEx2 or CreateCallEx3.

Return value:

Error code indicating success or failure.

13.3.8 StopCall

Stop a previously created or started call.

TOIErrorCode StopCall(uint callId)

Parameters:

callId Unique identification of the call, returned by

CreateCallEx2 or CreateCallEx3.

Return value:

Error code indicating success or failure.

13.3.9 AbortCall

Abort a previously created or started call.

TOIErrorCode AbortCall(uint callId)

Parameters:

callId Unique identification of the call, returned from

CreateCallEx2 or CreateCallEx3.

Return value:

Error code indicating success or failure

13.3.10 CancelAll

Cancel all available stacked calls that were started by this connection.

TOIErrorCode CancelAll()

Return value:

Error code indicating success or failure

13.3.11 CancelLast

Cancel (if still available) the last stacked call that was started by this connection.

TOIErrorCode CancelLast()

Return value:

Error code indicating success or failure.

13.3.12 AddToCall

Add resources to a previously created or started call.

156 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

TOIErrorCode AddToCall(uint callId, List<string> resources)

Parameters:

callId Unique identification of the call, returned from

CreateCallEx2 or CreateCallEx3.

resources List of names of zone groups, zones and/or control

outputs to be added to the call. A comma

separates each name in the routing list.

Return value:

Error code indicating success or failure.

13.3.13 RemoveFromCall

Removes resources from the running call.

TOIErrorCode RemoveFromCall(uint callId, List<string> resources)

Parameters:

callId Unique identification of the call, returned from

CreateCallEx2 or CreateCallEx3.

resources List of names of zone groups, zones and/or control

outputs to be removed from the call. A comma

separates each name in the routing list.

Return value:

Error code indicating success or failure.

13.3.14 ReportFault

Reports a fault diagnostics event in the system. The fault will be reported as a

DET_UserInjectedFault.

TOIErrorCode ReportFault(string faultname, out uint eventId)

Parameters:

faultname Textual representation of the fault to be reported.

eventId Identification of the diagnostic fault event reported

(only valid when return value is OIERROR_OK).

Return value:

Error code indicating success or failure.

13.3.15 ResolveFault

Resolve a specific diagnostic fault event. The received eventId of the ReportFault

function or a diagnostic event should be used as parameter.

TOIErrorCode ResolveFault(uint eventid)

157 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameters:

eventId Identification of the diagnostic fault event, received

by the ReportFault function.

Return value:

Error code indicating success or failure.

13.3.16 AckFault

Acknowledge a specific diagnostic fault event. Because the fault alarm depends on the

states of all fault events, this function can possibly acknowledge the system fault alarm

state (in case it was the last non-acknowledged fault). If the fault alarm changes state,

this will indicate an alarm state change using the AlarmUpdate event.

TOIErrorCode AckFault(uint eventid)

Parameters:

eventId Identification of the diagnostic fault event.

Return value:

Error code indicating success or failure.

13.3.17 ResetFault

Reset a specific diagnostic fault event. Because the fault alarm depends on the states of

all fault events, this function can possibly reset the system fault alarm state (in case it

was the last non-reset fault). If the fault alarm changes state, this will indicate an alarm

state change using the AlarmUpdate event.

TOIErrorCode ResetFault(uint eventid)

Parameters:

eventId Identification of the diagnostic fault event.

Return value:

Error code indicating success or failure.

13.3.18 AckAllFaults

Acknowledges all fault events. Because the fault alarm depends on the states of all fault

events, this will also acknowledge the fault alarm. If the fault alarm changes state, this

will indicate an alarm state change using the AlarmUpdate event.

TOIErrorCode AckAllFaults()

Return value:

Error code indicating success or failure.

13.3.19 ResetAllFaults

Resets all fault events. Because the fault alarm depends on the state of all fault events,

this can possibly reset the fault alarm, dependent whether the faults are resolved. If the

158 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

fault alarm changes state, this will indicate an alarm state change using the

AlarmUpdate event.

TOIErrorCode ResetAllFaults()

Return value:

Error code indicating success or failure.

13.3.20 AckEvacAlarm

Acknowledges the emergency alarm. If the emergency alarm changes state, this will

indicate an alarm state change using the AlarmUpdate event. When emergency control

(in the system controller configuration) is disabled, then this method will return a

parameter error.

TOIErrorCode AckEvacAlarm()

Return value:

Error code indicating success or failure.

13.3.21 ResetEvacAlarmEx

Resets the emergency alarm. If the emergency alarm changes state, this will indicate an

alarm state change using the AlarmUpdate event. When emergency control (in the

system controller configuration) is disabled, then this method will return a parameter

error.

TOIErrorCode ResetEvacAlarmEx(bool bAbortEvacCalls)

Parameters:

bAbortEvacCalls Whether or not currently running evacuation

priority calls must be aborted. true = abort running

evacuation priority calls, false = do not abort

running evacuation priority calls.

Return value:

Error code indicating success or failure.

13.3.22 AckFaultAlarm

Acknowledges the emergency alarm. If the fault alarm changes state, this will indicate an

alarm state change using the AlarmUpdate event.

TOIErrorCode AckFaultAlarm()

Return value:

Error code indicating success or failure.

13.3.23 ResetFaultAlarm

Resets the fault alarm. If the fault alarm changes state, this will indicate an alarm state

change using the AlarmUpdate event.

TOIErrorCode ResetFaultAlarm()

Return value:

Error code indicating success or failure.

159 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.3.24 GetAudioInputNames

Retrieve the list of configured audio inputs.

TOIErrorCode GetAudioInputNames(out List<string> names)

Parameters:

names The list with the names of all configured audio

inputs.

Return value:

Error code indicating success or failure.

13.3.25 GetBgmChannelNames

Retrieve the list of configured BGM channels.

TOIErrorCode GetBgmChannelNames(out List<string> names)

Parameters:

names The list with the names of all configured BGM

channels.

Return value:

Error code indicating success or failure.

13.3.26 GetChimeNames

Retrieves the list of configured chime names. Note that this is the same list as returned

by GetMessageNames.

TOIErrorCode GetChimeNames(out List<string> names)

Parameters:

names Comma (,) separated list of chime names.

Return value:

Error code indicating success or failure.

13.3.27 GetMessageNames

Retrieves the list of configured message names. Note that the chimes are also

messages and therefore are included in the list of message names.

TOIErrorCode GetMessageNames(out List<string> names)

Parameters:

names Comma (,) separated list of message names.

Return value:

Error code indicating success or failure.

13.3.28 GetZoneGroupNames

Retrieves the list of configured zone group names.

160 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

TOIErrorCode GetZoneGroupNames(out List<string> names)

Parameters:

names List of zone group names.

Return value:

Error code indicating success or failure.

13.3.29 GetZoneNames

Retrieve the list of configured zone names. When the zone group parameter is empty all

zone names are returned otherwise the zone names in that zone group are returned.

TOIErrorCode GetZoneNames(string sZoneGroupName, out List<string> names)

Parameters:

sZoneGroupName The zone group to get the names of (empty string

for all zones).

names The names of the zones

Return value:

Error code indicating success or failure.

13.3.30 GetConfigId

Retrieve the configuration identifier from the PRAESENSA system. This is a number

which is increased each time the configuration is saved.

TOIErrorCode GetConfigId(out uint configId)

Parameters:

configId Configuration identifier.

Return value:

Error code indicating success or failure.

13.3.31 SetSubscriptionResources

Subscribe or unsubscribe the Open Interface client to resource (read zone groups or

zones) state updates of particular resources. Only when a subscription is set for a

resource, resource state updates will be sent for that resource. When a subscription is

set for a resource, the ResourceState event will be used with the current state of that

resource.

It is not possible to subscribe to control outputs. No updated will be triggered for these

resources.

TOIErrorCode SetSubscriptionResources(bool bSub, List<string> resources)

161 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameters:

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

resources List of names of zone groups and/or zones. A

comma separates each name in the routing list.

Resources already having the subscription state

are ignored.

Return value:

Error code indicating success or failure.

13.3.32 SetSubscriptionResourcesFaultState

Subscribes or unsubscribes to resource (read zone groups or zones) fault state

notifications of particular resources for faults that affect the audio distribution of that zone

or zone group. Only when a subscription is set for a resource, resource fault state

notifications are sent for that resource. When a subscription is set for a resource, the

ResourceFaultState event will be used with the current state of that resource.

TOIErrorCode SetSubscriptionResourcesFaultState(bool bSub, List<string>

resources)

Parameters:

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

resources List of names of zone groups and/or zones. A

comma separates each name in the routing list.

Resources already having the subscription state

are ignored. Subscription for control output

resources is not allowed.

Return value:

Error code indicating success or failure.

13.3.33 SetSubscriptionBgmVolume

Subscribes or unsubscribes the client to BGM volume updates. Only when a

subscription is set for a BGM channel, BGM volume updates will be sent for that BGM

zone. When a subscription is set for a BGM zone, the BgmVolumeChanged event will be

used with the current volume of that BGM channel.

TOIErrorCode SetSubscriptionBgmVolume(bool bSub, List<string> resources)

Parameters:

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

resources List of BGM channel names.

Return value:

Error code indicating success or failure.

162 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.3.34 SetSubscriptionBgmRouting

Subscribes or unsubscribes the client to BGM routing updates. Only when a subscription

is set for a BGM channel, BGM routing updates will be sent for that BGM channel. When

a subscription is set for a BGM channel the BgmRoutingChanged event will be used with

the current routing of that BGM channel.

In case the BGM channel is not active due to a missing audio input in the configuration

then no subscription can be set and OIERROR_INTERNAL_ERROR is returned.

TOIErrorCode SetSubscriptionBgmRouting(bool bSub, string channel)

Parameters:

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

channel name of the BGM channel.

Return value:

Error code indicating success or failure.

13.3.35 SetSubscriptionEvents

Subscribe or unsubscribe the Open Interface client to diagnostic event updates. Only

when a subscription is set for an event group and there are events, diagnostic event

updates will be sent for that group. When a subscription is set for an event group, the

DiagEventNotification event will be used with the diagnostic event for that group.

TOIErrorCode SetSubscriptionEvents(bool bSubscribe, TOIDiagEventGroup

eventGroup)

Parameters:

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

eventGroup Group identification of the diagnostic events. The

associated event-types for each group is

represented in §13.2.14.

Return value:

Error code indicating success or failure.

13.3.36 SetSubscriptionAlarm

Subscribe or unsubscribe the client to fault or evac alarm state updates. Only when a

subscription is set for the fault alarm, fault alarm state updates will be sent. When a

subscription is set for an alarm type, the AlarmUpdate event will be used with the alarm

state for that alarm type.

TOIErrorCode SetSubscriptionAlarm(TOIAlarmType alarmType, bool bSub)

163 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameters:

alarmType Alarm type to subscribe or unsubscribe to. The

associated alarm type is represented in §13.2.3.

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

Return value:

Error code indicating success or failure.

13.3.37 SetSubscriptionUnitCount

Subscribe or unsubscribe the Open Interface client to connected unit count updates.

Only when a subscription is set for the unit count, unit count updates will be sent. When

a subscription is set, the UnitCountChanged event will be used with the current number

of connected units.

TOIErrorCode SetSubscriptionUnitCount(bool bSub)

Parameters:

bSub Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

Return value:

Error code indicating success or failure.

13.3.38 IncrementBgmVolume

Increments the BGM volume of routing with 3 dB. Note: The BGM volume in a zone

cannot exceed the configured maximum BGM volume.

TOIErrorCode IncrementBgmVolume(List<string> resources)

Parameters:

resources List of names of zone groups and/or zones.

Return value:

Error code indicating success or failure.

13.3.39 DecrementBgmVolume

Decrements the BGM volume of routing with 3 dB. Note: The BGM volume in a zone

cannot drop below the configured minimum BGM volume.

TOIErrorCode DecrementBgmVolume(List<string> resources)

Parameters:

resources List of names of zone groups and/or zones.

Return value:

Error code indicating success or failure.

164 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.3.40 IncrementBgmChannelVolume

Increments the BGM volume of a channel with 3 dB. Note: The BGM volume in a zone

cannot exceed the configured maximum BGM volume.

TOIErrorCode IncrementBgmChannelVolume(string channelName)

Parameters:

channelName BGM channel name

Return value:

Error code indicating success or failure.

13.3.41 DecrementBgmChannelVolume

Decrements the BGM volume of a channel with 3 dB. Note: The BGM volume in a zone

cannot drop below the configured minimum BGM volume.

TOIErrorCode DecrementBgmChannelVolume(string channelName)

Parameters:

channelName BGM channel name

Return value:

Error code indicating success or failure.

13.3.42 SetBgmVolume

Sets the BGM volume of routing. Note: The BGM volume in a zone cannot exceed the

configured maximum BGM volume or drop below the configured minimum BGM volume,

except if the mute value (-96 dB) is used.

TOIErrorCode SetBgmVolume(int volume, List<string> resources)

Parameters:

volume Volume to set. Value range: 0 .. –96 (dB). Use –96

(dB) to mute the BGM.

resources List of names of zone groups and/or zones.

Return value:

Error code indicating success or failure.

13.3.43 AddBgmRouting

Adds a routing to a BGM channel. Either all specified routing is added or, in case of an

error, no routing at all.

TOIErrorCode AddBgmRouting(string channel, List<string> resources)

165 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Parameters:

channel Name of the BGM channel.

resources List of names of zone groups and/or zones.

Return value:

Error code indicating success or failure.

13.3.44 RemoveBgmRouting

Removes routing from a BGM channel. Either all specified routing is removed or, in case

of an error, no routing at all.

TOIErrorCode RemoveBgmRouting(string channel, List<string> resources)

Parameters:

channel Name of the BGM channel.

resources List of names of zone groups and/or zones.

Return value:

Error code indicating success or failure.

13.3.45 ToggleBgmRouting

Toggles routing in a BGM channel. When none of names in the specified routing are part

the BGM channel, all specified routing is added, else all supplied routing is removed or,

in case of an error, the current routing of the BGM channel remains unchanged.

TOIErrorCode ToggleBgmRouting(string channel, List<string> resources)

Parameters:

channel Name of the BGM channel.

resources List of names of zone groups and/or zones.

Return value:

Error code indicating success or failure.

13.3.46 SetBgmRouting

Sets the routing of a BGM channel. Either replaces the current routing of a BGM channel

with all specified routing or, in case of an error, the current routing of the BGM channel

remains unchanged.

TOIErrorCode SetBgmRouting(string channel, List<string> resources)

Parameters:

channel Name of the BGM channel.

resources List of names of zone groups and/or zones.

166 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Return value:

Error code indicating success or failure.

13.3.47 ActivateVirtualControlInput

Activate a virtual control input. If the virtual control input is already active then activating

it again will not have any effect.

TOIErrorCode ActivateVirtualControlInput(string virtualControlInput)

Parameters:

virtualControlInput Name of the virtual control input to activate.

Return value:

Error code indicating success or failure.

13.3.48 DeactivateVirtualControlInput

Deactivate a virtual control input. If the virtual control input is already inactive then

deactivating it again will not have any effect.

TOIErrorCode DeactivateVirtualControlInput(string virtualControlInput,

TOIVirtualControlInputDeactivation deactivationType)

Parameters:

virtualControlInput Name of the virtual control input to deactivate.

deactivationType Specifier how the associated action should be

deactivated (see §13.2.11).

Return value:

Error code indicating success or failure.

13.3.49 SetSubscriptionVirtualControlInputs

Subscribe or unsubscribe the Open Interface client to virtual control input state updates.

Only when a subscription is set for the virtual control input state, virtual control input

state updates will be sent. When a subscription is set, the

VirtualControlInputStateChanged event will be used with the current state of the virtual

control inputs.

TOIErrorCode SetSubscriptionVirtualControlInputs(bool bSubscription, List<string>

virtualControlInputs)

Parameters:

bSubscription Whether to subscribe or unsubscribe. true =

subscribe, false = unsubscribe.

virtualControlInputs List of names of virtual control inputs.

Return value:

Error code indicating success or failure.

167 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.3.50 GetVirtualControlInputNames

Retrieve the configured virtual control input names.

TOIErrorCode GetVirtualControlInputNames(out List<string> names)

Parameters:

names List with the names of virtual control input names.

Return value:

Error code indicating success or failure.

13.3.51 GetConfiguredUnits

Retrieve the list of configured units (along with the host name) from the PRAESENSA

system. Only the units that are enabled are returned.

TOIErrorCode GetConfiguredUnits(out List<string> units)

Parameters:

names List of unit names. Formatted as name(host name)

Return value:

Error code indicating success or failure.

13.3.52 GetConnectedUnits

Retrieve the list of connected units (along with the host name) from the PRAESENSA

system. Only the units that are configured, enabled and connected with the correct

software release (units that can be controlled) are returned.

TOIErrorCode GetConnectedUnits(out List<string> units)

Parameters:

names List of unit names. Formatted as name(host name)

Return value:

Error code indicating success or failure.

13.4 Events

Apart from enabling the subscription in the system controller by calling to corresponding

subscription method, the application needs to attach an event handler to the event. The

following example shows how to handle events.

NOTE: Make sure to attach the event handler before enabling the subscription as

enabling a subscription will trigger an initial fetch of the data from the system controller.

static void Main(string[] args)

{

 OpenInterfaceNetClient client = new OpenInterfaceNetClient();

 string ip = "192.168.53.100";

 string username = "user";

168 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 string password = "password";

 TOIErrorCode ec = client.Connect(ip, username, password);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 return;

 }

 List<string> resources = new List<string>();

 resources.Add("Zone 1");

 resources.Add("Zone 2");

 // Attach the event handler to the event

 client.BgmVolumeChanged += OnBgmVolumeChanged;

 // Set the subscription in the system controller

 client.SetSubscriptionBgmVolume(true /*bSub*/, resources);

}

private static void OnBgmVolumeChanged(object sender,

OIBgmVolumeChangedEventArgs e)

{

 // Handle the event

}

13.4.1 ConnectionBroken

Will be called when the connection with the system controller is broken (closed by other

means than Disconnect()). When this function is called, it is necessary to make a new

connection and set all subscriptions again.

event EventHandler ConnectionBroken;

Note that this event is also triggered when the PRAESENSA System detects a message

transmission buffer overflow due to too slow reception by the application.

13.4.2 CallStateChanged

Indicates the state of a call has changed.

event EventHandler<OICallStateChangedEventArgs> CallStateChanged

Where the event argument OICallStateChangedEventArgs consists of:

CallId Unique identification of the call.

State State of the call. See §13.2.6 for the definitions of

the call states.

13.4.3 ResourceStateChanged

Indication that a resource state has changed.

event EventHandler<OIResourceStateEventArgs> ResourceStateChanged

169 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where the event argument OIResourceStateEventArgs consists of:

Resources List of names of zone groups and/or zones.

CallId Unique identification of the call (when state is

activated).

Priority Priority of the call using the resource (when state

is activated). See §13.2.5 for the priority value

ranges.

State State of the resource. See §13.2.6 for the

definitions of the resource states.

Note that when a zone-group is partial occupied by a call, the state of that zone-group is

marked as occupied (OIRS_INUSE). Only when all zones in the zone-group are free, the

state of the zone-group is marked free (OIRS_FREE).

13.4.4 ResourceFaultStateChanged

Indicates that a resource state has changed.

event EventHandler<OIResourceFaultStateEventArgs> ResourceFaultStateChanged

Where the event argument OIResourceFaultStateEventArgs consists of:

Resources List of names of zone groups and/or zones. A

comma separates each name in the routing list.

FaultState Fault state for faults that affect the audio

distribution of these zone or zone group resources.

Note that when a zone-group has a fault in one of its zones then that zone group is

marked as in fault (OIRS_FAULT).

13.4.5 BgmRoutingChanged

Indication that a BGM routing has changed.

event EventHandler<OIBgmRoutingChangedEventArgs> BgmRoutingChanged

Where the event argument OIBgmRoutingChangedEventArgs consists of:

Channel Name of the BGM channel.

Routing List of names of zone groups, zones and/or control

outputs.

Added Whether the routing was added (true) or removed

(false).

13.4.6 BgmVolumeChanged

Indication that BGM volume has changed.

event EventHandler<OIBgmVolumeChangedEventArgs> BgmVolumeChanged

170 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where the event argument OIBgmVolumeChangedEventArgs consists of:

Routing Name of the BGM zone.

Volume The new volume of the zone.

13.4.7 AlarmUpdate

Indication of alarm state change.

event EventHandler<OIAlarmStateChangedEventArgs> AlarmUpdate

Where the event argument OIAlarmStateChangedEventArgs consists of:

State State of the fault alarm. See §13.2.4 for the

definitions of the fault alarm states.

13.4.8 UnitCountChanged

Indication of unit count change

event EventHandler<OIUnitCountChangedEventArgs> UnitCountChanged

Where the event argument OIUnitCountChangedEventArgs consists of:

UnitCount The number of connected units

13.4.9 DiagEventNotification

Will be called when a diagnostic event is logged inside the system controller. See

chapter 4.1 for use of the diagEvent.

event EventHandler<OIDiagEventEventArgs> DiagEventNotification

Where the event argument OIDiagEventEventArgs consists of:

ActionType Action done on the event. See §13.2.17 for the

definitions of the action types.

Event Reference to a DiagEvent object.

13.4.10 VirtualControlInputStateChanged

Will be called when the state of one or more virtual control inputs changes.

event EventHandler<OIVirtualControlInputStateChangedEventArgs>

VirtualControlInputStateChanged

Where the event argument OIVirtualControlInputStateChangedEventArgs consists of:

VirtualControlInputs List of names of virtual control inputs that have

changed state. A comma separates each name in

the list.

State State of the virtual control inputs. See §13.2.12 for

the definitions of the virtual input contact states.

171 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5 DiagEvent Classes

The following chapter describes the derived DiagEvent classes and corresponding

properties available. The derived DiagEvent classes are annotated with the

ClassIdAttribute. This attribute contains the ClassId which corresponds with the

TOIDiagEventType described in §13.2.13. The ClassId should be used to cast the

DiagEvent base class to the correct derived class, as shown in the example below.

private static void OnDiagEventNotification(object sender, OIDiagEventEventArgs e)

{

 DiagEvent diagEvent = e.Event;

 TOIDiagEventType eventType = (TOIDiagEventType)diagEvent.ClassId;

 switch (eventType)

 {

 case TOIDiagEventType.OIDET_UserInjectedFault:

 DET_UserInjectedFault userInjectedFaultDiagEvent =

(DET_UserInjectedFault)diagEvent;

 string description = userInjectedFaultDiagEvent.ErrorDescription;

 break;

 default:

 break;

 }

}

13.5.1 DiagEvent

Base class for all DiagEvents.

Properties:

TOIDiagEventGroup

EventGroup

The group this event belongs to. See §13.2.14 for

the definitions of the event groups.

uint EventId Unique identification id.

DateTime AddTimeStamp Time the event was created.

DateTime

AcknowledgeTimeStamp

Time the event was acknowledged.

DateTime ResolveTimeStamp Time the event was resolved.

DateTime ResetTimeStamp Time the event was reset.

EventOriginator

AddEventOriginator

The originator that added the event. See §13.6 for

the class definitions.

EventOriginator

AcknowledgeEventOriginator

The originator that acknowledged the event. See

§13.6 for the class definitions.

EventOriginator

ResolveEventOriginator

The originator that resolved the event. See §13.6

for the class definitions.

172 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

EventOriginator

ResetOriginator

The originator that reset the event. See §13.6 for

the class definitions.

13.5.2 GeneralEvent

Base class for all general events. Derived from DiagEvent. This class is empty and does

not have any properties.

13.5.2.1 DET_EvacAcknowledge

ClassId: TOIDiagEventType.OIDET_EvacAcknowledge.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.2 DET_EvacReset

ClassId: TOIDiagEventType.OIDET_EvacReset.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.3 DET_EvacSet

ClassId: TOIDiagEventType.OIDET_EvacSet.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.4 DET_UnitConnect

ClassId: TOIDiagEventType.OIDET_UnitConnect.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.5 DET_DemoteToBackup

ClassId: TOIDiagEventType.OIDET_DemoteToBackup.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.6 DET_SCStartup

ClassId: TOIDiagEventType.OIDET_SCStartup.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.7 DET_OpenInterfaceConnect

ClassId: TOIDiagEventType.OIDET_OpenInterfaceConnect.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.8 DET_OpenInterfaceDisconnect

ClassId: TOIDiagEventType.OIDET_OpenInterfaceDisconnect.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.9 DET_OpenInterfaceConnectFailed

ClassId: TOIDiagEventType.OIDET_OpenInterfaceConnectFailed.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.10 DET_CallLoggingSuspended

ClassId: TOIDiagEventType.OIDET_CallLoggingSuspended.

Derived from GeneralEvent. This class is empty and does not have any properties.

173 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.2.11 DET_CallLoggingResumed

ClassId: TOIDiagEventType.OIDET_CallLoggingResumed.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.12 DET_UserLogIn

ClassId: TOIDiagEventType.OIDET_UserLogIn.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.13 DET_UserLogOut

ClassId: TOIDiagEventType.OIDET_UserLogOut.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.14 DET_UserLogInFailed

ClassId: TOIDiagEventType.OIDET_UserLogInFailed.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.15 DET_BackupPowerModeStart

ClassId: TOIDiagEventType.OIDET_BackupPowerModeStart.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.16 DET_BackupPowerModeEnd

ClassId: TOIDiagEventType.OIDET_BackupPowerModeEnd.

Derived from GeneralEvent. This class is empty and does not have any properties.

13.5.2.17 DET_ConfigurationRestored

ClassId: TOIDiagEventType.OIDET_ConfiguredRestored.

Derived from GeneralEvent.

Properties:

bool

ConfigurationSettingsRestored

Indication if configuration settings are restored

bool SecuritySettingsRestored Indication if security settings are restored.

bool MessagesRestored Indication if messages are restored. Not supported

(yet) in the PRAESENSA system.

13.5.2.18 DET_InControl

ClassId: TOIDiagEventType.OIDET_InControl.

Derived from GeneralEvent.

Properties:

string CallStationGroupName Name of the group this call station belongs to.

13.5.3 CallDiagEventV2

Base class for all call events. Derived from DiagEvent.

174 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Properties:

uint CallId Id of the call.

13.5.3.1 DET_CallStartDiagEventV2

ClassId: TOIDiagEventType.OIDET_CallStartV2.

Derived from CallDiagEventV2.

Properties:

string AudioInput Audio input of the call.

string StartChime Configured start chime name.

string EndChime Configured end chime name.

bool LiveSpeech Indicates if live speech is used.

string MessageNames Comma separated string of messages.

string OutputNames List of names of zones used in the call. A comma

separates each name in the routing list.

uint Priority Call priority.

uint MessageRepeat Number of message repeats configured.

uint OriginalCallId Call id of the original call in case this is a replay.

TOICallOutputHandling

OutputHandling

Call output handling. See §13.2.18.

TOICallTiming CallTiming Call timing. See §13.2.20.

13.5.3.2 DET_CallEndDiagEventV2

ClassId: TOIDiagEventType.OIDET_CallEndV2.

Derived from CallComplete.

Properties:

TOICallState StateCompleted Call state at which the call has ended. See

§13.2.6.

bool Aborted Indicates if the call was aborted.

TOICallStopReason

StopReason

Reason the call was stopped. See §13.2.7.

13.5.3.3 DET_CallChangeResourceDiagEventV2

ClassId: TOIDiagEventType.OIDET_CallChangeResourceV2.

Derived from CallDiagEventV2.

Properties:

175 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

string Removed List of names of zones removed from the call. A

comma separates each name in the routing list.

string Added List of names of zones added to the call. A comma

separates each name.

13.5.3.4 DET_CallTimeoutDiagEventV2

ClassId: TOIDiagEventType.OIDET_CallTimeoutV2.

Derived from CallDiagEventV2.

Properties:

string Unreached Comma separated string of unreached resources.

13.5.3.5 DET_CallRestartDiagEvent

ClassId: TOIDiagEventType.OIDET_CallRestart.

Derived from DET_CallStartDiagEventV2.

Properties:

string Unreached Comma separated string of unreached resources.

13.5.3.6 DET_CallResetDiagEvent

ClassId: TOIDiagEventType.OIDET_CallReset.

Derived from CallComplete.

Properties:

TOICallState StateCompleted Call state at which the call has ended. See

§13.2.6.

TOICallResetReason

ResetReason

Reason the call is reset. See §13.2.8.

13.5.4 FaultEvent

Base class for all fault events. Derived from DiagEvent. This class is empty and does not

have any properties.

13.5.4.1 DET_AudioPathSupervision

ClassId: TOIDiagEventType.OIDET_AudioPathSupervision.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.2 DET_MicrophoneSupervision

ClassId: TOIDiagEventType.OIDET_MicrophoneSupervision.

Derived from FaultEvent. This class is empty and does not have any properties.

176 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.3 DET_ControlInputLineFault

ClassId: TOIDiagEventType.OIDET_ControlInputLineFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.4 DET_CallStationExtension

ClassId: TOIDiagEventType.OIDET_CallStationExtension.

Derived from FaultEvent.

Properties:

uint NumberConfigured Number of configured extensions.

uint NumberConnected Number of connected extensions.

13.5.4.5 DET_ConfigurationFile

ClassId: TOIDiagEventType.OIDET_ConfigurationFile.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.6 DET_ConfigurationVersion

ClassId: TOIDiagEventType.OIDET_ConfigurationVersion.

Derived from FaultEvent.

Properties:

string Expected Expected configuration version.

string Loaded Loaded configuration version.

13.5.4.7 DET_IllegalConfiguration

ClassId: TOIDiagEventType.OIDET_IllegalConfiguration.

Derived from FaultEvent.

Properties:

uint ErrorCode Code of the illegal configuration error. Not used at

the moment, currently filled with the value ‘0’.

13.5.4.8 DET_PrerecordedMessagesNames

ClassId: TOIDiagEventType.OIDET_PrerecordedMessagesNames.

Derived from FaultEvent.

Properties:

string MissingNames Comma separated string with the missing

messages.

13.5.4.9 DET_PrerecordedMessagesCorrupt

ClassId: TOIDiagEventType.OIDET_PrerecordedMessagesCorrupt.

Derived from FaultEvent.

177 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Properties:

string CorruptNames Comma separated string with the corrupt

messages.

13.5.4.10 DET_UnitMissing

ClassId: TOIDiagEventType.OIDET_UnitMissing.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.11 DET_UnitReset

ClassId: TOIDiagEventType.OIDET_UnitReset.

Derived from FaultEvent.

Properties:

string ChipType Processor type which caused the unit reset.

13.5.4.12 DET_UserInjectedFault

ClassId: TOIDiagEventType.OIDET_UserInjectedFault.

Properties:

string ErrorDescription User injected error description.

13.5.4.13 DET_NoFaults

ClassId: TOIDiagEventType.OIDET_NoFaults.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.14 DET_ZoneLineFault

ClassId: TOIDiagEventType.OIDET_ZoneLineFault.

Derived from FaultEvent.

Properties:

string ZoneNames Comma separated string with zone names for

which the fault occurred.

string ControlInputName Control input name which is configured for the

zone line fault.

13.5.4.15 DET_NetworkChange

ClassId: TOIDiagEventType.OIDET_NetworkChangeDiagEvent.

Derived from FaultEvent.

Properties:

uint NrOfNetworkChanges Number of network changes.

TNetworkChangeData[]

NetworkChanges

Detailed information about network changes.

178 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Where the TNetworkChangeData consists of:

string LocalPortId The port ID of the local device.

string LocalSystemName The name of the local device as configured in the

PRAESENSA system.

string RemotelPortId The port ID of the remote device.

string RemoteSystemName The name of the remote device as configured in

the PRAESENSA system.

13.5.4.16 DET_IncompatibleFirmware

ClassId: TOIDiagEventType.OIDET_IncompatibleFirmware.

Derived from FaultEvent.

Properties:

string Current Current firmware in the device.

string Expected Expected firmware the device should contain.

13.5.4.17 DET_Amp48VAFault

ClassId: TOIDiagEventType.OIDET_Amp48VAFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.18 DET_Amp48VBFault

ClassId: TOIDiagEventType.OIDET_Amp48VBFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.19 DET_AmpChannelFault

ClassId: TOIDiagEventType.OIDET_AmpChannelFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.20 DET_AmpShortCircuitLineAFault

ClassId: TOIDiagEventType.OIDET_AmpShortCircuitLineAFault.

Derived from FaultEvent.

Properties:

179 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.21 DET_AmpShortCircuitLineBFault

ClassId: TOIDiagEventType.OIDET_AmpShortCircuitLineBFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.22 DET_AmpAcc18VFault

ClassId: TOIDiagEventType.OIDET_AmpAcc18VFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.23 DET_AmpSpareInternalFault

ClassId: TOIDiagEventType.OIDET_AmpSpareInternalFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.24 DET_AmpChannelOverloadFault

ClassId: TOIDiagEventType.OIDET_AmpChannelOverloadFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.25 DET_EolFailureLineAFault

ClassId: TOIDiagEventType.OIDET_EolFailureLineAFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.26 DET_EolFailureLineBFault

ClassId: TOIDiagEventType.OIDET_EolFailureLineBFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

180 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.27 DET_GroundShortFault

ClassId: TOIDiagEventType.OIDET_GroundShortFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.28 DET_OverheatFault

ClassId: TOIDiagEventType.OIDET_OverheatFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.29 DET_PowerMainsSupply

ClassId: TOIDiagEventType.OIDET_PowerMainsSupply.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.30 DET_PowerBackupSupply

ClassId: TOIDiagEventType.OIDET_PowerBackupSupply.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.31 DET_MainsAbsentPSU1Fault

ClassId: TOIDiagEventType.OIDET_MainsAbsentPSU1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.32 DET_MainsAbsentPSU2Fault

ClassId: TOIDiagEventType.OIDET_MainsAbsentPSU2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.33 DET_MainsAbsentPSU3Fault

ClassId: TOIDiagEventType.OIDET_MainsAbsentPSU3Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.34 DET_BackupAbsentPSU1Fault

ClassId: TOIDiagEventType.OIDET_BackupAbsentPSU1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.35 DET_BackupAbsentPSU2Fault

ClassId: TOIDiagEventType.OIDET_BackupAbsentPSU2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.36 DET_BackupAbsentPSU3Fault

ClassId: TOIDiagEventType.OIDET_BackupAbsentPSU3Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.37 DET_DcOut1PSU1Fault

ClassId: TOIDiagEventType.OIDET_DcOut1PSU1Fault.

181 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.38 DET_DcOut2PSU1Fault

ClassId: TOIDiagEventType.OIDET_DcOut2PSU1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.39 DET_DcOut1PSU2Fault

ClassId: TOIDiagEventType.OIDET_DcOut1PSU2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.40 DET_DcOut2PSU2Fault

ClassId: TOIDiagEventType.OIDET_DcOut2PSU2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.41 DET_DcOut1PSU3Fault

ClassId: TOIDiagEventType.OIDET_DcOut1PSU3Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.42 DET_DcOut2PSU3Fault

ClassId: TOIDiagEventType.OIDET_DcOut2PSU3Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.43 DET_AudioLifelinePSU1Fault

ClassId: TOIDiagEventType.OIDET_AudioLifelinePSU1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.44 DET_AudioLifelinePSU2Fault

ClassId: TOIDiagEventType.OIDET_AudioLifelinePSU2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.45 DET_AudioLifelinePSU3Fault

ClassId: TOIDiagEventType.OIDET_AudioLifelinePSU3Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.46 DET_AccSupplyPSU1Fault

ClassId: TOIDiagEventType.OIDET_AccSupplyPSU1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.47 DET_AccSupplyPSU2Fault

ClassId: TOIDiagEventType.OIDET_AccSupplyPSU2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.48 DET_AccSupplyPSU3Fault

ClassId: TOIDiagEventType.OIDET_AccSupplyPSU3Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

182 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.49 DET_Fan1Fault

ClassId: TOIDiagEventType.OIDET_Fan1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.50 DET_Fan2Fault

ClassId: TOIDiagEventType.OIDET_Fan2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.51 DET_DcAux1Fault

ClassId: TOIDiagEventType.OIDET_DcAux1Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.52 DET_DcAux2Fault

ClassId: TOIDiagEventType.OIDET_DcAux2Fault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.53 DET_BatteryShortFault

ClassId: TOIDiagEventType.OIDET_BatteryShortFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.54 DET_BatteryRiFault

ClassId: TOIDiagEventType.OIDET_BatteryRiFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.55 DET_BatteryOverheatFault

ClassId: TOIDiagEventType.OIDET_BatteryOverheatFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.56 DET_BatteryFloatChargeFault

ClassId: TOIDiagEventType.OIDET_BatteryFloatChargeFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.57 DET_MainsAbsentChargerFault

ClassId: TOIDiagEventType.OIDET_MainsAbsentChargerFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.58 DET_PoESupplyFault

ClassId: TOIDiagEventType.OIDET_PoESupplyFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.59 DET_PowerSupplyAFault

ClassId: TOIDiagEventType.OIDET_PowerSupplyAFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.60 DET_PowerSupplyBFault

ClassId: TOIDiagEventType.OIDET_PowerSupplyBFault.

183 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.61 DET_ExternalPowerFault

ClassId: TOIDiagEventType.OIDET_ExternalPowerFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.62 DET_ChargerSupplyVoltageTooLowFault

ClassId: TOIDiagEventType.OIDET_ChargerSupplyVoltageTooLowFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.63 DET_BatteryOvervoltageFault

ClassId: TOIDiagEventType.OIDET_BatteryOvervoltageFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.64 DET_BatteryUndervoltageFault

ClassId: TOIDiagEventType.OIDET_BatteryUndervoltageFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.65 DET_MediaClockFault

ClassId: TOIDiagEventType.OIDET_MediaClockFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.66 DET_ChargerFault

ClassId: TOIDiagEventType.OIDET_ChargerFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.67 DET_Amp20VFault

ClassId: TOIDiagEventType.OIDET_Amp20VFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.68 DET_AmpPsuFault

ClassId: TOIDiagEventType.OIDET_AmpPsuFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.69 DET_NetworkLatencyFault

ClassId: TOIDiagEventType.OIDET_NetworkLatencyFault.

Derived from FaultEvent.

Properties:

184 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.70 DET_SynchronizationFault

classId: TOIDiagEventType.OIDET_SynchronizationFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.71 DET_AudioDelayFault

ClassId: TOIDiagEventType.OIDET_AudioDelayFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.72 DET_InternalPowerFault

classId: TOIDiagEventType.OIDET_InternalPowerFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.73 DET_InternalCommunicationFault

ClassId: TOIDiagEventType.OIDET_InternalCommunicationFault.

Derived from FaultEvent.

Properties:

String Board String separated list of boards with a fault

13.5.4.74 DET_VoipFault

ClassId: TOIDiagEventType.OIDET_VoipFault.

Derived from FaultEvent.

13.5.4.75 DET_RemoteOutputFault

ClassId: TOIDiagEventType.OIDET_RemoteOutputFault.

Derived from FaultEvent.

Properties:

Severity Severity Severity of the fault. LOW = 0, HIGH = 1.

13.5.4.76 DET_RemoteOutputLoopFault

ClassId: TOIDiagEventType.OIDET_RemoteOutputLoopFault.

Derived from FaultEvent.

Properties:

String

remoteZoneGroupName

Name of the remote zone group

185 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.77 DET_RemoteOutputConfigurationFault

ClassId: TOIDiagEventType.OIDET_RemoteOutputConfigurationFault.

Derived from FaultEvent.

Properties:

String

remoteZoneGroupName

Name of the remote zone group

13.5.4.78 DET_LicenseFault

ClassId: TOIDiagEventType.OIDET_LicenseFault.

Derived from FaultEvent.

Properties:

License LicenseType Type of the license. Subsystem = 0

13.5.4.79 DET_RemoteSystemFault

ClassId: TOIDiagEventType.OIDET_RemoteSystemFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.80 DET_RemoteMainPowerFault

ClassId: TOIDiagEventType.OIDET_RemoteMainPowerFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.81 DET_RemoteBackupPowerFault

ClassId: TOIDiagEventType.OIDET_RemoteBackupPowerFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.82 DET_RemoteGroundFault

ClassId: TOIDiagEventType.OIDET_RemoteGroundFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.83 DET_RemoteFault

ClassId: TOIDiagEventType.OIDET_RemoteFault.

Derived from FaultEvent. This class is empty and does not have any properties.

186 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.5.4.84 DET_PowerSupplyFault

ClassId: TOIDiagEventType.OIDET_PowerSupplyFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.85 DET_StackedSwitchMismatchFault

ClassId: TOIDiagEventType.OIDET_StackedSwitchMismatchFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.86 DET_RedundantDataPathFault

ClassId: TOIDiagEventType.OIDET_RedundantDataPathFault

Derived from FaultEvent. This class is empty and does not have any properties.

13.5.4.87 DET_ControlOutputLineFault

ClassId: TOIDiagEventType.OIDET_ControlOutputLineFault.

Derived from FaultEvent. This class is empty and does not have any properties.

13.6 EventOriginator classes

The following chapter describes the derived EventOriginator classes and corresponding

properties available. The derived DiagEvent classes are annotated with the

ClassIdAttribute. This attribute contains the ClassId which corresponds with the

TOIEventOriginatorType described in §13.2.15. The ClassId should be used to cast the

EventOriginator base class to the correct derived class, as shown in the example below.

private static void OnDiagEventNotification(object sender, OIDiagEventEventArgs e)

{

 DiagEvent diagEvent = e.Event;

 EventOriginator addEventOriginator = diagEvent.AddEventOriginator;

 TOIEventOriginatorType originatorType =

(TOIEventOriginatorType)addEventOriginator.ClassId;

 switch (originatorType)

 {

 case TOIEventOriginatorType.OIEOT_UserEventOriginator:

 UserEventOriginator userEventOriginator =

(UserEventOriginator)addEventOriginator;

 string unitName = userEventOriginator.UnitName;

 break;

 }

}

13.6.1 EventOriginator

Base class for all EventOriginators. This class is empty and does not have any

properties

187 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.6.1.1 NoEventOriginator

ClassId: OIEOT_NoEventOriginator. Event originator indicating there is no event

originator.

Derived from EventOriginator. This class is empty and does not have any properties.

13.6.1.2 UnitEventOriginator

ClassId: OIEOT_UnitEventOriginator. Event originator indicating the event is originated

by a unit.

Derived from EventOriginator.

Properties:

string UnitName Name of the unit.

13.6.1.3 OpenInterfaceEventOriginator

ClassId: OIEOT_OpenInterfaceEventOriginator. Event originator indicating the event is

originated by an open interface client.

Derived from EventOriginator.

Properties:

string TcpIpDeviceName Device name as configured in the PRAESENSA

system.

uint IpAddress IP address of the client, in the form of “127.0.0.1”.

ushort PortNumber TCP-port number of the device on the network.

string Username User name of the client logged into the

PRAESENSA system.

13.6.1.4 ControlInputEventOriginator

ClassId: OIEOT_ControlInputEventOriginator. Event originator indicating the event is

originated by a control input on a unit.

Derived from EventOriginator.

Properties:

string OriginatorName Name of the control input as configured in the

PRAESENSA system.

13.6.1.5 AudioOutputEventOriginator

ClassId: OIEOT_AudioOutputEventOriginator. Event originator indicating the event is

originated by an audio output on a unit.

Derived from EventOriginator. This class is empty and does not have any properties.

13.6.1.6 AudioInputEventOriginator

ClassId: OIEOT_AudioInputEventOriginator. Event originator indicating the event is

originated by an audio input on a unit.

Derived from EventOriginator. This class is empty and does not have any properties.

188 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

13.6.1.7 UserEventOriginator

ClassId: OIEOT_UserEventOriginator. Event originator indicating a user action

performed on the system.

Derived from EventOriginator.

Properties:

string OriginatorName Name of the user as configured in the

PRAESENSA system.

13.6.1.8 NetworkEventOriginator

ClassId: OIEOT_NetworkEventOriginator. Event originator indicating the event is

originated by a network connection. Used for user login events.

Derived from EventOriginator.

Properties:

uint IpAddress IP address of the client, in the form of “127.0.0.1”.

ushort PortNumber TCP-port number of the device on the network.

string Username The user name of the originator network

connection.

13.6.1.9 StackedUnitEventOriginator

ClassId: OIEOT_StackedUnitEventOriginator. Event originator indicating the event is

originated by a sub-unit of a composite unit. Used for stacked Cisco switches.

Derived from UnitEventOriginator.

Properties:

byte stackId Id of the sub-unit, in case of stacked Cisco

switches this can be a value from 1 to 4

13.6.1.10 ControlOutputEventOriginator

ClassId: OIEOT_ControlOutputEventOriginator. Event originator indicating the event is

originated by a control output on a unit.

Derived from EventOriginator.

Properties:

string OriginatorName Name of the control output as configured in the

PRAESENSA system.

189 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

14. EXAMPLES

14.1 Interface usage

In the example code blow a simple C# .NET application is pre-coded, containing a single

form, where a subset of the functions mentioned above or present. This example could

help you as a starting point for application development based on the Open Interface

.NET library

Most of the fields used in the form have self-explaining names.

Form layout

Form Code
using Bosch.PRAESENSA.OpenInterface;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Windows.Forms;

namespace OpenInterfaceNetExample

{

 /// <summary>

 /// This class implements an example with which it is possible

 /// to execute some actions in a PRAESENSA system using the Open Interface.

 /// It also shows how events generated by the system can be monitored.

 /// Only a part of the available functionality is used. Other functionality

 /// can be used in similar ways as shown in this example.

 /// This example uses the PRAESENSA Open Interface .NET library.

 /// There is only limited error checking.

 /// </summary>

 /// <remarks>This is only an example! Do not use it in real systems.</remarks>

 public partial class OILExample : Form

 {

190 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 private OpenInterfaceNetClient m_client;

 public OILExample()

 {

 InitializeComponent();

 Console.SetOut(new ListBoxWriter(lb_Console));

 // Instantiate the OpenInterfaceNetClient and add the event handlers

 m_client = new OpenInterfaceNetClient();

 m_client.ConnectionBroken += OnConnectionBroken;

 m_client.DiagEventNotification += OnDiagEventNotification;

 }

 /// <summary>

 /// Function that is called when the Open Interface connection between the client

 /// and the system controller is broken.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void OnConnectionBroken(object sender, EventArgs e)

 {

 Console.WriteLine("Connect broken reported (remote)");

 }

 /// <summary>

 /// Function that is called when a new diagnostic event is logged in the PRAESENSA system.

 /// In order for this function to be called the client must be connected to the system controller

 /// and subscribed to at least one event group (call, general or fault).

 /// </summary>

 /// <param name="sender">Indicates who raised the event..</param>

 /// <param name="e">Diagnostic event logged in the system.</param>

 private void OnDiagEventNotification(object sender, OIDiagEventEventArgs e)

 {

 Console.WriteLine("EventId = {0}, action = {1}, event = {2}", e.Event.EventId, e.ActionType, e.Event.ToString());

 }

 /// <summary>

 /// Function that is called when the connect button is clicked.

 /// It will connect the client to the system controller using the parameters

 /// defined by the user. Only when connected can other functionality be used.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_Connect_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.Connect(tb_IpAddress.Text, tb_UserName.Text, tb_Password.Text, true

/*secure*/);

 if (ec == TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Connected to: {0}", tb_IpAddress.Text);

 }

 else

 {

 Console.WriteLine("Failed to connect: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the disconnect button is clicked.

 /// It will disconnect the client from the system controller.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_Disconnect_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.Disconnect();

 if (ec == TOIErrorCode.OIERROR_OK)

191 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 {

 Console.WriteLine("Disconnected");

 }

 else

 {

 Console.WriteLine("Failed to disconnect: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the call create button is clicked.

 /// It will create a call using the parameters defined by the user and

 /// the returned call ID is stored.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_CallCreate_Click(object sender, EventArgs e)

 {

 uint callId = 0;

 List<string> routing = tb_Routing.Text.Split(new char[] { ',' }).ToList();

 List<string> messages = tb_Messages.Text.Split(new char[] { ',' }).ToList();

 TOIErrorCode ec = m_client.CreateCallEx2(routing,

 Convert.ToUInt32(tb_Priority.Text),

 TOICallOutputHandling.OICOH_PARTIAL,

 TOICallStackingMode.OICSM_WAIT_FOR_ALL,

 0,

 tb_StartChime.Text,

 tb_EndChime.Text,

 cb_LiveSpeech.Checked,

 tb_AudioInput.Text,

 messages,

 Convert.ToUInt32(tb_RepeatCnt.Text),

 TOICallTiming.OICTM_IMMEDIATE,

 "",

 0, 0, 0, 0,

 out callId);

 if (ec == TOIErrorCode.OIERROR_OK)

 {

 tb_CallId.Text = callId.ToString();

 }

 else

 {

 Console.WriteLine("Failed to create call: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the call start button is clicked.

 /// This will start the call that is created earlier.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_CallStart_Click(object sender, EventArgs e)

 {

 uint callId = Convert.ToUInt32(tb_CallId.Text);

 TOIErrorCode ec = m_client.StartCreatedCall(callId);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to start call: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the call stop button is clicked.

 /// This will stop the call that was started earlier.

192 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_CallStop_Click(object sender, EventArgs e)

 {

 uint callId = Convert.ToUInt32(tb_CallId.Text);

 TOIErrorCode ec = m_client.StopCall(callId);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to stop call: {0}", ec);

 }

 tb_CallId.Text = "";

 }

 /// <summary>

 /// Function that is called when the call abort button is clicked.

 /// This will abort the call that was started earlier.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_CallAbort_Click(object sender, EventArgs e)

 {

 uint callId = Convert.ToUInt32(tb_CallId.Text);

 TOIErrorCode ec = m_client.AbortCall(callId);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to abort call: {0}", ec);

 }

 tb_CallId.Text = "";

 }

 /// <summary>

 /// Function that is called when the emergency acknowledge button is clicked.

 /// This will acknowledge the evac alarm (if present).

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_EmergencyAck_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.AckEvacAlarm();

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to acknowledge evac alarm: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the emergency reset button is clicked.

 /// This will reset the evac alarm and abort all running evac calls.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_EmergencyReset_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.ResetEvacAlarmEx(true /*bAbortEvacCalls*/);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to reset evac alarm: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the all faults acknowledge button is clicked.

 /// This will acknowledge all fault events in the system.

193 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_AllFaultsAck_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.AckAllFaults();

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to acknowledge all faults: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the all faults reset button is clicked.

 /// This will reset all fault events in the system.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_AllFaultsReset_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.ResetAllFaults();

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to reset all faults: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the report fault button is clicked.

 /// This will trigger a UserInjectedFault event in the system with the

 /// description provided by the user.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_ReportFault_Click(object sender, EventArgs e)

 {

 uint eventId = 0;

 TOIErrorCode ec = m_client.ReportFault(tb_UserFault.Text, out eventId);

 if (ec == TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Fault reported, eventId: {0}", eventId);

 }

 else

 {

 Console.WriteLine("Failed to report fault: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the fault acknowledge button is clicked.

 /// This will acknowledge a single fault in the system.

 /// The user should provide the fault ID.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_FaultAck_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.AckFault(Convert.ToUInt32(tb_EventId.Text));

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to acknowledge fault: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the fault resolve button is clicked.

 /// This will resolve a single fault in the system.

194 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 /// The user should provide the fault ID.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_FaultResolve_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.ResolveFault(Convert.ToUInt32(tb_EventId.Text));

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to resolve fault: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the fault reset button is clicked.

 /// This will reset a single fault in the system.

 /// The user should provide the fault ID.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void btn_FaultReset_Click(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.ResetFault(Convert.ToUInt32(tb_EventId.Text));

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to reset fault: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the call events checkbox is clicked.

 /// This will either subscribe or unsubscribe from call events.

 /// Call events are handled by <see cref="OnDiagEventNotification(object, OIDiagEventEventArgs)"/>.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void cb_CallEvents_CheckedChanged(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.SetSubscriptionEvents(cb_CallEvents.Checked,

TOIDiagEventGroup.OIDEG_CALLEVENTGROUP);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to (un)subscribe to/from call events: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the general events checkbox is clicked.

 /// This will either subscribe or unsubscribe from general events.

 /// General events are handled by <see cref="OnDiagEventNotification(object, OIDiagEventEventArgs)"/>.

 /// </summary>

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void cb_GeneralEvents_CheckedChanged(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.SetSubscriptionEvents(cb_GeneralEvents.Checked,

TOIDiagEventGroup.OIDEG_GENERALEVENTGROUP);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to (un)subscribe to/from general events: {0}", ec);

 }

 }

 /// <summary>

 /// Function that is called when the fault events checkbox is clicked.

 /// This will either subscribe or unsubscribe from fault events.

 /// Fault events are handled by <see cref="OnDiagEventNotification(object, OIDiagEventEventArgs)"/>.

 /// </summary>

195 en | PRAESENSA 2.10
P

Bosch Security Systems B.V. Open interface programming instructions 07-2024 | 2.10

 /// <param name="sender">Indicates who raised the event.</param>

 /// <param name="e">Parameters of the event (not used).</param>

 private void cb_FaultEvents_CheckedChanged(object sender, EventArgs e)

 {

 TOIErrorCode ec = m_client.SetSubscriptionEvents(cb_FaultEvents.Checked,

TOIDiagEventGroup.OIDEG_FAULTEVENTGROUP);

 if (ec != TOIErrorCode.OIERROR_OK)

 {

 Console.WriteLine("Failed to (un)subscribe to/from fault events: {0}", ec);

 }

 }

 }

}

Bosch Security Systems B.V.
Torenallee 49
5617 BA Eindhoven
Netherlands
www.boschsecurity.com
© Bosch Security Systems B.V., 2024

202407020848

Building solutions for a better life

